Answer:
Three hundred and fifty-four thousand, two hundred and ten =354210
Hundred thousand║Ten thousand║Thousand║Hundred║Tens║Ones
3 5 4 2 1 0
Step-by-step explanation:
Answer:
or 
Step-by-step explanation:
We use casework on when
and when
.
For the first case,
, we add 9 to both sides to get
.
Dividing both sides by 3 gives

For the second case,
, we add 9 to both sides to get
.
Dividing both sides by 3 gives
.
Checking both cases, we plug in
and
.
For the first case, we have
, which satisfies the equation.
For the second case, we have
, which also satisfies the equation.
This gives us two solutions to the equation;
and
.
Answer: False
=============================================
Explanation:
I'll use x in place of p.
The original equation 10x^2-5x = -8 becomes 10x^2-5x+8 = 0 after moving everything to one side.
Compare this to ax^2+bx+c = 0
We have
Plug those three values into the discriminant formula below
d = b^2 - 4ac
d = (-5)^2 - 4(10)(8)
d = 25 - 40*8
d = 25 - 320
d = -295
The discriminant is negative, which means we have no real solutions. If your teacher has covered complex or imaginary numbers, then you would say that the quadratic has 2 complex roots. If your teacher hasn't covered this topic yet, then you'd simply say "no real solutions".
Either way, this quadratic doesn't have exactly one solution. That only occurs when d = 0. Therefore, the original statement is false.
Draw the graph of R = {(1,1), (2,2), (3,3), (4,4), (5,5), (1,4), (2,5), (4,1), (5,2)}
tresset_1 [31]
Answer:
Step-by-step explanation: