C. Lined up along the center of the cell
I always remembered Metaphase as the chromosomes saying “meet me in the middle”
The correct answer is "the formation of new brain cell connections as the result of reading a book".
Usually, neuroplasticity is apparent in young children when the central nervous system has an abundance of neurons. This is always in the context of forming new brain cell connections or synapses that will lead the person to access the information quicker. This also exemplifies the principle of use and disuse when it comes to knowledge.
The other choices concerns the skeletal system, cardiovascular system, and the endocrine/reproductive system; all of which do not have a relation with neuroplasticity.
Take India for example.... people use the bathroom and bathe in rivers!
Now lets say we look at the US our pollution comes from factories, trash that people dont throw away, fertilizers and many more... but the difference is, that in developed countries like the US our water is filtered.... And in India water is not safe to drink
<span>There are numerous proteins in muscle. The main two are thin actin filaments and thick myosin filaments. Thin filaments form a scaffold that thick filaments crawl up. There are many regulatory proteins such as troponin I, troponin C, and tropomyosin. There are also proteins that stabilize the cells and anchor the filaments to other cellular structures. A prime example of this is dystrophin. This protein is thought to stabilize the cell membrane during contraction and prevent it from breaking. Those who lack completely lack dystrophin have a disorder known as Duchene muscular dystrophy. This disease is characterized by muscle wasting begininng in at a young age and usually results in death by the mid 20s. The sarcomere is the repeating unit of skeletal muscle.
Muscle cells contract by interactions of myosin heads on thick filament with actin monomers on thin filament. The myosin heads bind tightly to actin monomers until ATP binds to the myosin. This causes the release of the myosin head, which subsequently swings foward and associates with an actin monomer further up the thin filament. Hydrolysis and of ATP and the release of ADP and a phosphate allows the mysosin head to pull the thick filament up the thin filament. There are roughly 500 myosin heads on each thick filament and when they repeatedly move up the thin filament, the muscle contracts. There are many regulatory proteins of this contraction. For example, troponin I, troponin C, and tropomyosin form a regulatory switch that blocks myosin heads from binding to actin monomers until a nerve impulse stimulates an influx of calcium. This causes the switch to allow the myosin to bind to the actin and allows the muscle to contract. </span><span>
</span>