First, you want to establish your equations.
L=7W-2
P=60
This is what we already know. To find the width, we have to plug in what we know into P=2(L+W), our equation to find perimeter.
60=2(7W-2+W)
Now that we only have 1 variable, we can solve.
First, distribute the 2.
60=14W-4+2W
Next, combine like terms.
60=16W-4
Then, add four to both sides.
64=16W
Lastly, divide both sides by 16
W=4
To find the length, we plug in our width.
7W-2
7(4)-2
28-2
L=26
Answer:
the answer you are looking for is C
Here’s the correct answer and the way i got to it. Hope this helps :)
I hope this helps you! :)
Answer: a) √50
b) n = 1 + 7i
Step-by-step explanation:
first, the modulus of a complex number z = a + bi is
IzI = √(a^2 + b^2)
The fact that n is complex does not mean that n doesn't has a real part, so we must write our numbers as:
m = 2 + 6i
n = a + bi
Im + nI = 3√10
Im + n I = √(a^2 + b^2 + 2^2 + 6^2)= 3√10
= √(a^2 + b^2 + 40) = 3√10
a^2 + b^2 + 40 = 3^2*10 = 9*10 = 90
a^2 + b^2 = 90 - 40 = 50
√(a^2 + b^2 ) = InI = √50
The modulus of n must be equal to the square root of 50.
now we can find any values a and b such a^2 + b^2 = 50.
for example, a = 1 and b = 7
1^2 + 7^2 = 1 + 49 = 50
Then a possible value for n is:
n = 1 + 7i