1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vekshin1
3 years ago
13

Plzzz help me plz Show how to find the x-intercepts of this parabola using factoring and the Zero Product Property. Select the a

nswer which is the sum of all solutions to this equation, rounded to the nearest tenth.
y = -10x2 + 8x + 24
Mathematics
1 answer:
DENIUS [597]3 years ago
5 0

Answer:

x = -6/5 and x = 2

Step-by-step explanation:

y = -10x² + 8x + 24

0 = -2(5x+6)(x-2)

5x+6 = 0         x-2 = 0

5x = -6             x = 2

x = -6/5

You might be interested in
How many solutions does the equation x_1 +x_2+x_3+x_4+x_5=21 have where x_1, x_2, x_3, x_4, and x_5 are nonnegative integers and
omeli [17]

Step-by-step explanation:

x_{1} + x_{2} + x_{3} + x_{4} + x_{5} = 21\\     (given)

Let us consider :

x_{1} = t_{1} + 1

x_{2} = t_{2}

x_{3} = t_{3}

x_{4}  = t_{4}

x_{5} = t_{5}

Now, by substituting the above considerations in the above equation, we get:

t_{1} + 1 + t_{2} + t_{3} + t_{4} + t_{5} = 21\\

t_{1}  + t_{2} + t_{3} + t_{4} + t_{5} = 20\\

where,

t_{i} \geq 1

then it follows

n = 20

r = 4

then no. of solutions for the eqn = _{r}^{n + r}\textrm{C}

                                                      = _{4}^{24}\textrm{C}

                                                      = 10626

Answer :

no. of solutions for the eqn 10626

4 0
3 years ago
I need help!!!! Someone help please
yarga [219]

Answer:

Rewrite using the commutative property of multiplication.

− 4 t s

Step-by-step explanation:

6 0
3 years ago
Write a4bc2in expanded form.
zimovet [89]

Answer:

I'm not sure

Step-by-step explanation:

I don't even think that is possible

8 0
3 years ago
(x^2y+e^x)dx-x^2dy=0
klio [65]

It looks like the differential equation is

\left(x^2y + e^x\right) \,\mathrm dx - x^2\,\mathrm dy = 0

Check for exactness:

\dfrac{\partial\left(x^2y+e^x\right)}{\partial y} = x^2 \\\\ \dfrac{\partial\left(-x^2\right)}{\partial x} = -2x

As is, the DE is not exact, so let's try to find an integrating factor <em>µ(x, y)</em> such that

\mu\left(x^2y + e^x\right) \,\mathrm dx - \mu x^2\,\mathrm dy = 0

*is* exact. If this modified DE is exact, then

\dfrac{\partial\left(\mu\left(x^2y+e^x\right)\right)}{\partial y} = \dfrac{\partial\left(-\mu x^2\right)}{\partial x}

We have

\dfrac{\partial\left(\mu\left(x^2y+e^x\right)\right)}{\partial y} = \left(x^2y+e^x\right)\dfrac{\partial\mu}{\partial y} + x^2\mu \\\\ \dfrac{\partial\left(-\mu x^2\right)}{\partial x} = -x^2\dfrac{\partial\mu}{\partial x} - 2x\mu \\\\ \implies \left(x^2y+e^x\right)\dfrac{\partial\mu}{\partial y} + x^2\mu = -x^2\dfrac{\partial\mu}{\partial x} - 2x\mu

Notice that if we let <em>µ(x, y)</em> = <em>µ(x)</em> be independent of <em>y</em>, then <em>∂µ/∂y</em> = 0 and we can solve for <em>µ</em> :

x^2\mu = -x^2\dfrac{\mathrm d\mu}{\mathrm dx} - 2x\mu \\\\ (x^2+2x)\mu = -x^2\dfrac{\mathrm d\mu}{\mathrm dx} \\\\ \dfrac{\mathrm d\mu}{\mu} = -\dfrac{x^2+2x}{x^2}\,\mathrm dx \\\\ \dfrac{\mathrm d\mu}{\mu} = \left(-1-\dfrac2x\right)\,\mathrm dx \\\\ \implies \ln|\mu| = -x - 2\ln|x| \\\\ \implies \mu = e^{-x-2\ln|x|} = \dfrac{e^{-x}}{x^2}

The modified DE,

\left(e^{-x}y + \dfrac1{x^2}\right) \,\mathrm dx - e^{-x}\,\mathrm dy = 0

is now exact:

\dfrac{\partial\left(e^{-x}y+\frac1{x^2}\right)}{\partial y} = e^{-x} \\\\ \dfrac{\partial\left(-e^{-x}\right)}{\partial x} = e^{-x}

So we look for a solution of the form <em>F(x, y)</em> = <em>C</em>. This solution is such that

\dfrac{\partial F}{\partial x} = e^{-x}y + \dfrac1{x^2} \\\\ \dfrac{\partial F}{\partial y} = e^{-x}

Integrate both sides of the first condition with respect to <em>x</em> :

F(x,y) = -e^{-x}y - \dfrac1x + g(y)

Differentiate both sides of this with respect to <em>y</em> :

\dfrac{\partial F}{\partial y} = -e^{-x}+\dfrac{\mathrm dg}{\mathrm dy} = e^{-x} \\\\ \implies \dfrac{\mathrm dg}{\mathrm dy} = 0 \implies g(y) = C

Then the general solution to the DE is

F(x,y) = \boxed{-e^{-x}y-\dfrac1x = C}

5 0
3 years ago
Can someone help???????????
GalinKa [24]

Answer:

B. is the correct answer

4 0
2 years ago
Other questions:
  • 3 less than "x"is equal to 13
    11·2 answers
  • A researcher who is studying social media habits chose 725 MYbook users at random at the beginning of 2016. Of these users, 67%
    11·1 answer
  • !!??!,?!!?!?!?!?!?!!!!??!??!?!
    6·1 answer
  • -1589 equals x - 798
    6·1 answer
  • Help me please! A,b,c or d
    15·2 answers
  • Can someone please answer this question please answer my question and answer it correctly and show work please
    5·1 answer
  • 3 is subtractred from the cube of a number?​
    15·1 answer
  • Jack,Jill y Bill cada uno lleva un balde de 48 onzas lleno de agua bajando la colina . En el momento que ellos llegaron abajo, e
    11·1 answer
  • PLEASE HELP ASAP This probability distribution shows the
    12·1 answer
  • What is the slope of this line? Please help ASAP Thank you!!! &lt;33 A.2 B.1/2 C.4 D.1/4
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!