Answer:
2:1
Step-by-step explanation:
The perimeter of the first is twice as large as the 2nd
Answer:
13/42
Step-by-step explanation:
Answer:
1716 ;
700 ;
1715 ;
658 ;
1254 ;
792
Step-by-step explanation:
Given that :
Number of members (n) = 13
a. How many ways can a group of seven be chosen to work on a project?
13C7:
Recall :
nCr = n! ÷ (n-r)! r!
13C7 = 13! ÷ (13 - 7)!7!
= 13! ÷ 6! 7!
(13*12*11*10*9*8*7!) ÷ 7! (6*5*4*3*2*1)
1235520 / 720
= 1716
b. Suppose seven team members are women and six are men.
Men = 6 ; women = 7
(i) How many groups of seven can be chosen that contain four women and three men?
(7C4) * (6C3)
Using calculator :
7C4 = 35
6C3 = 20
(35 * 20) = 700
(ii) How many groups of seven can be chosen that contain at least one man?
13C7 - 7C7
7C7 = only women
13C7 = 1716
7C7 = 1
1716 - 1 = 1715
(iii) How many groups of seven can be chosen that contain at most three women?
(6C4 * 7C3) + (6C5 * 7C2) + (6C6 * 7C1)
Using calculator :
(15 * 35) + (6 * 21) + (1 * 7)
525 + 126 + 7
= 658
c. Suppose two team members refuse to work together on projects. How many groups of seven can be chosen to work on a project?
(First in second out) + (second in first out) + (both out)
13 - 2 = 11
11C6 + 11C6 + 11C7
Using calculator :
462 + 462 + 330
= 1254
d. Suppose two team members insist on either working together or not at all on projects. How many groups of seven can be chosen to work on a project?
Number of ways with both in the group = 11C5
Number of ways with both out of the group = 11C7
11C5 + 11C7
462 + 330
= 792
Answer: 
Step-by-step explanation:
Move all terms to one side
Simplify
Split the second term
Factor out common terms in the first two terms, then in the last two terms.
Factor out the common term

Show me the full question