A hexagon can be considered to be 6 triangles with a common vertex.
Area of 1 of the triangle = 1/2 * 2 * side length
Area of whole hexagon is 6 times this.
Answer:
The number of tiles the rug will cover is 54 tiles
Step-by-step explanation:
Here we have,
Total area covered by the rug = 18 ft²
Size of one tile = 1/3 ft²
Therefore the number of tiles that can fit into the the area is given by;
Total area of the rug ÷ Area of one tile
= 18 ft² ÷ 1/3 ft²
Here we note that we are dividing a number by a fraction which is the same as multiplying the number by the inverse of the fraction as follows
= 18 × 3/1 ft²/ft² = 54 tiles
The number of tiles the rug will cover = 54 tiles.
Answer:
<em>mDBC = 341 °</em>
Step-by-step explanation:
Arc DBC is almost the whole circle, if you were to exclude the degree measure of minor arc DC; which is, in other words m∠ DPC
Now by Vertical Angles Theorem:
m ∠ DPC = m∠ APB, ⇒ provided BD, and AC are diameters
m∠ DPC = 19°
This would mean ⇒
mDBC = 360 - m∠ DPC,
mDBC = 360 - 19,
mDBC = 341 degrees ( ° )
Answer:

Step-by-step explanation:
We are given the function:

And we want to determine:

Substitute:
![\displaystyle \begin{aligned}g(x + a) - g(x) &=\left[5(x+a)^2 + 2(x+a)\right] -\left[5x^2+2x\right] \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7Dg%28x%20%2B%20a%29%20-%20g%28x%29%20%26%3D%5Cleft%5B5%28x%2Ba%29%5E2%20%2B%202%28x%2Ba%29%5Cright%5D%20-%5Cleft%5B5x%5E2%2B2x%5Cright%5D%20%20%20%20%5Cend%7Baligned%7D)
And simplify:
![\displaystyle \begin{aligned}g(x + a) - g(x) &=\left[5(x+a)^2 + 2(x+a)\right] -\left[5x^2+2x\right] \\ \\ &= \left(5(x^2 + 2ax + a^2) + (2x + 2a) \right) + \left(-5x^2 - 2x\right) \\ \\ &= \left((5x^2 + 10ax + 5a^2) + (2x + 2a)\right) + \left(-5x^2 - 2x\right) \\ \\ &= (5x^2-5x^2) + (10ax + 2x - 2x) + (5a^2+2a) \\ \\ &= 10ax + 5a^2 + 2a \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7Dg%28x%20%2B%20a%29%20-%20g%28x%29%20%26%3D%5Cleft%5B5%28x%2Ba%29%5E2%20%2B%202%28x%2Ba%29%5Cright%5D%20-%5Cleft%5B5x%5E2%2B2x%5Cright%5D%20%5C%5C%20%20%5C%5C%20%26%3D%20%5Cleft%285%28x%5E2%20%2B%202ax%20%2B%20a%5E2%29%20%2B%20%282x%20%2B%202a%29%20%5Cright%29%20%2B%20%5Cleft%28-5x%5E2%20-%202x%5Cright%29%20%5C%5C%20%5C%5C%20%26%3D%20%5Cleft%28%285x%5E2%20%2B%2010ax%20%2B%205a%5E2%29%20%2B%20%282x%20%2B%202a%29%5Cright%29%20%2B%20%5Cleft%28-5x%5E2%20-%202x%5Cright%29%20%5C%5C%20%5C%5C%20%26%3D%20%285x%5E2-5x%5E2%29%20%2B%20%2810ax%20%2B%202x%20-%202x%29%20%2B%20%285a%5E2%2B2a%29%20%20%20%20%20%5C%5C%20%5C%5C%20%26%3D%2010ax%20%2B%205a%5E2%20%2B%202a%20%5Cend%7Baligned%7D)
In conclusion:
