Answer:
B
Step-by-step explanation:
Well since it is arthimetic sequence we know the formula
We know d is difference between second term and first so it will be -5- (-12)= -5+12= 7

the domain of this is 1,2,3,4.......
range is -12,-5,2,9.......
Therefore answer is B.
Answer:
2,674.14 g
Step-by-step explanation:
Recall that the formula for radioactive decay is
N = N₀ e^(-λt)
where,
N is the amount left at time t
N₀ is the initial amount when t=0, (given as 42,784 g)
λ = coefficient of radioactive decay
= 0.693 ÷ Half Life
= 0.693 ÷ 18
= 0.0385
t = time elapsed (given as 72 years)
e = exponential constant ( approx 2.7183)
If we substitute these into our equation:
N = N₀ e^(-λt)
= (42,787) (2.7183)^[(-0.0385)(72)]
= (42,787) (2.7183)^(-2.7726)
= (42,787) (0.0625)
= 2,674.14 g
Answer:
d. t distribution with df = 80
Step-by-step explanation:
Assuming this problem:
Consider independent simple random samples that are taken to test the difference between the means of two populations. The variances of the populations are unknown, but are assumed to be equal. The sample sizes of each population are n1 = 37 and n2 = 45. The appropriate distribution to use is the:
a. t distribution with df = 82.
b. t distribution with df = 81.
c. t distribution with df = 41.
d. t distribution with df = 80
Solution to the problem
When we have two independent samples from two normal distributions with equal variances we are assuming that
And the statistic is given by this formula:
Where t follows a t distribution with
degrees of freedom and the pooled variance
is given by this formula:
This last one is an unbiased estimator of the common variance
So on this case the degrees of freedom are given by:

And the best answer is:
d. t distribution with df = 80
The answer is A cuz it’s pointing right, which is greater than 119