Answer:
1) ∠A=84°
2) ∠C=20°
Step-by-step explanation:
1)
First, find ∠C:
<em>(I'm assuming the exterior angle of 126° makes a straight line with ∠C)</em>
The angles on a straight line always add up to 180. Therefore:
∠C+126=180
∠C=180-126
∠C=54
Then find ∠B:
We also know that all the angles in a triangle add up to 180. Therefore:
∠A+∠B+∠C=180
∠A+∠B+54=180
∠A+∠B=126
<em>(we know ∠A=2(∠B))</em>
2(∠B)+∠B=126
3(∠B)=126
∠B=42
Now, find ∠A:
∠A=2(∠B)
∠A=2(42)
∠A=84°
2)
First, find ∠B:
<em>(Again, I'm assuming the exterior angle of 100° makes a straight line with ∠B)</em>
The angles on a straight line always add up to 180. Therefore:
∠B+100=180
∠B=180-100
∠B=80
Then find ∠A:
We also know that all the angles in a triangle add up to 180. Therefore:
∠A+∠B+∠C=180
∠A+80+∠C=180
∠A+∠C=100
<em>(we know ∠A=4(∠C))</em>
4(∠C)+∠C=100
5(∠C)=100
∠C=20°
Answer:
Step-by-step explanation:
-4 > x / -7....multiply both sides by -7, and flip the sign
-4 * -7 < = x
28 < x....or x > 28
yes, they are both the same.
28 < x ....this is saying that 28 is less then x
x > 28....this is saying that x is greater then 28
so there both saying the same thing
Answer:
The area of the rectangle is increasing at a rate of 84 square centimeters per second.
Step-by-step explanation:
The area for a rectangle is given by the formula:

Where <em>w</em> is the width and <em>l</em> is the length.
We are given that the length of the rectangle is increasing at a rate of 6 cm/s and that the width is increasing at a rate of 5 cm/s. In other words, dl/dt = 6 and dw/dt = 5.
First, differentiate the equation with respect to <em>t</em>, where <em>w</em> and <em>l</em> are both functions of <em>t: </em>
![\displaystyle \frac{dA}{dt}=\frac{d}{dt}\left[w\ell]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7BdA%7D%7Bdt%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%5Cleft%5Bw%5Cell%5D)
By the Product Rule:

Since we know that dl/dt = 6 and that dw/dt = 5:

We want to find the rate at which the area is increasing when the length is 12 cm and the width is 4 cm. Substitute:

The area of the rectangle is increasing at a rate of 84 square centimeters per second.
C , i dont know if it’s right but it’s the only table with the same number on the bottom . and same number in general