I think that DNA in a eukaryotic cell is found in a nucleus.
Answer:
The attached files contain the realization of a D flip-flop from an RS flip-flop. It also contains the truth tables for both kinds of flip-flops
Explanation:
An SR flip flop is like a light switch. Set turns it 'on' and reset turns it 'off'
A D type flip-flop is a clocked flip-flop which has two stable states. A D type flip-flop operates with a delay in input by one clock cycle.
D type flip-flops are easily constructed from an SR flip-flop by simply connecting an inverter between the S and the R inputs so that the input to the inverter is connected to the S input and the output of the inverter is connected to the R input.
Since both arrays are already sorted, that means that the first int of one of the arrays will be smaller than all the ints that come after it in the same array. We also know that if the first int of arr1 is smaller than the first int of arr2, then by the same logic, the first int of arr1 is smaller than all the ints in arr2 since arr2 is also sorted.
public static int[] merge(int[] arr1, int[] arr2) {
int i = 0; //current index of arr1
int j = 0; //current index of arr2
int[] result = new int[arr1.length+arr2.length]
while(i < arr1.length && j < arr2.length) {
result[i+j] = Math.min(arr1[i], arr2[j]);
if(arr1[i] < arr2[j]) {
i++;
} else {
j++;
}
}
boolean isArr1 = i+1 < arr1.length;
for(int index = isArr1 ? i : j; index < isArr1 ? arr1.length : arr2.length; index++) {
result[i+j+index] = isArr1 ? arr1[index] : arr2[index]
}
return result;
}
So this implementation is kind of confusing, but it's the first way I thought to do it so I ran with it. There is probably an easier way, but that's the beauty of programming.
A quick explanation:
We first loop through the arrays comparing the first elements of each array, adding whichever is the smallest to the result array. Each time we do so, we increment the index value (i or j) for the array that had the smaller number. Now the next time we are comparing the NEXT element in that array to the PREVIOUS element of the other array. We do this until we reach the end of either arr1 or arr2 so that we don't get an out of bounds exception.
The second step in our method is to tack on the remaining integers to the resulting array. We need to do this because when we reach the end of one array, there will still be at least one more integer in the other array. The boolean isArr1 is telling us whether arr1 is the array with leftovers. If so, we loop through the remaining indices of arr1 and add them to the result. Otherwise, we do the same for arr2. All of this is done using ternary operations to determine which array to use, but if we wanted to we could split the code into two for loops using an if statement.
Answer:
A. 2
Explanation:
The food function in the C source code uses two for loop statements to fill and array of size 100 with 100 values ranging from 1 to 100 and the second to get the total sum to the values in the array. With this, two program paths are created.