1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gennadij [26K]
3 years ago
6

HELP I REALLY NEED AN ANSWER WILL GIVE BRAINLIEST IF I CANNNNN

Mathematics
1 answer:
dmitriy555 [2]3 years ago
6 0

Answer:

62

Step-by-step explanation:

You might be interested in
Which of these numbers is a solution to this problem: X is greater than 9?
Shtirlitz [24]
X = 12, because there is only one answer that has a number bigger than 9 :)
8 0
3 years ago
Rusty's hair grows at the rate of 1 over 4 inch per month.
Nadya [2.5K]
1/4 = 2/8. Remember that. This means that 1/8 is equal to half of a month. It there is 5/8, you can add a half month for every eights. In this case, it will take 2 and a half months
Easy Way:<span>If your hair were to grow 1/4 inches a month, it would also grow 2/8 inches a month, since 1/4 = 2/8. How long with it take 1/8 (0.5/4)inches to grow? It would take a half of a month for your hair to grow 1/8 inches.
</span><span>Now that we know 1/8 inches grows in a half of a month, we add a half of a month for every eigths. Since we are trying to figure out how long it would take for it to grow 5/8 inches, we add 5 half months to get the answer of 2 and a half months. Kind of confusing, but that is the best way I can describe it.</span>
8 0
3 years ago
Read 2 more answers
PLEASE HELP
cricket20 [7]
You can use the cosine rule for this - you might have to change some of the letters around for it to make sense though. Hope this helps!

4 0
3 years ago
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
2 years ago
Robert went to the grocery store and purchased cans of soup and frozen dinners. each can of soup has 300 mg of sodium and each f
Paraphin [41]

There are 9 cans of soup and 5 cans of frozen dinner.

The variables used for soup and frozen dinner are x and y respectively.

Step-by-step explanation:

Let,

Soup = x

Frozen Dinner = y

According to given statement of sodium;

300x + 500y = 5200 eqn 1

And,

x + y = 14 eqn 2

Multiplying\ equation\ 2\ with\ 300\\300(x+y=14)\\300x+300y=4200\ Eqn 3\\

Subtracting Eqn 3 from Eqn 1;

(300x+500y)-(300x+300y)=5200-4200\\300x+500y-300x-300y=1000\\200y=1000\\y=\frac{1000}{200} \\y=5

Putting value of y in Eqn 1;

300x+500(5)=5200\\300x+2500=5200\\\\Subtracting\ 2500\ from\ both\ sides\ \\300x+2500-2500=5200-2500\\300x=2700\\x=\frac{2700}{300} \\x=9

There are 9 cans of soup and 5 cans of frozen dinner.

The variables used for soup and frozen dinner are x and y respectively.

Keywords: Variables, linear equations, subtraction.

Learn more about linear equations at;

  • brainly.com/question/5047646
  • brainly.com/question/5048216

#LearnwithBrainly

5 0
3 years ago
Other questions:
  • How to write a equation for the rRelationship Linear. Hour 2,3,4,5.quart 5,6.5,8,9.5 .how do you find equation for that
    13·1 answer
  • Function: y = 2(x + 3)² +1
    11·1 answer
  • Mr. Sharon can paper a room in 3hrs. His assistant needs 5hrs. If Mr. Sharon works 1hr and then his assistant completes the job
    9·1 answer
  • Determine if true or false
    6·2 answers
  • Which point plotted below has coordinates (4, -2)?
    10·2 answers
  • the table shows the free throw statistics for four players on kent middle schools basketball team. who had the best throw statis
    12·1 answer
  • The table shows the relationship between Megan's earnings and the hours that she worked.
    15·1 answer
  • It costs $6 to buy 3 bags of chips. How much do 24 bags of chips cost?
    5·2 answers
  • Give me all the answer right this important to me
    7·1 answer
  • Y=6x . What is the new equation if it's shifted 5 units left
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!