To find the time at which both balls are at the same height, set the equations equal to each other then solve for t.
h = -16t^2 + 56t
h = -16t^2 + 156t - 248
-16t^2 + 56t = -16t^2 + 156t - 248
You can cancel out the -16t^2's to get
56t = 156t - 248
=> 0 = 100t - 248
=> 248 = 100t
=> 2.48 = t
Using this time value, plug into either equation to find the height.
h = 16(2.48)^2 + 56(2.48)
Final answer:
h = 40.4736
Hope I helped :)
Answer:
x=-5/8, y=15/2, z=-10. (-5/8, 15/2, -10).
Step-by-step explanation:
4x-7y=5
8x+3z=-35
6y+3z=15
----------------
4x=7y+5
2(4x)=2(7y+5)
8x=14y+10
14y+10+3z=-35
14y+3z=-35-10
14y+3z=-45
-----------------------
14y+3z=-45
6y+3z=15
------------------
14y+3z=-45
-(6y+3z)=-15
---------------------
14y+3z=-45
-6y-3z=-15
--------------------
8y=-60
simplify,
y=15/2
6(15/2)+3z=15
45+3z=15
3z=15-45
3z=-30
z=-30/3
z=-10
8x+3(-10)=-35
8x-30=-35
8x=-35+30
8x=-5
x=-5/8
x=-5/8, y=15/2, z=-10.
Answer:
∠G ≅ ∠Q
Step-by-step explanation:
<u>Given</u>
<u>Answer choices:</u>
- BI≅PQ - yes correct, corresponding
- ∠B ≅ ∠P - yes correct, corresponding
- ∠G ≅ ∠Q - no, incorrect, it should read ∠G ≅ ∠Z
- ZP ≅ GB - yes correct, corresponding
So, incorrect choice is the third one