1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yaroslaw [1]
2 years ago
15

Which expressions are equivalent to the on below select all that apply 9x

Mathematics
2 answers:
s2008m [1.1K]2 years ago
8 0

Answer:

B + D

Step-by-step explanation:

Serga [27]2 years ago
5 0

Answer:

B and D

Step-by-step explanation:

Multiplying exponents just adds them.

You might be interested in
Choose the answer that solves the equation:
pentagon [3]
D) 36
7 - 3 + 5 = 9 × 4 = 36
7 0
3 years ago
Read 2 more answers
2. What is the quotient of -18 divided by (- 1/6)?<br> A -108<br> С 3<br> B -3<br> D 108
vivado [14]
Positive 3 is the answer
6 0
3 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
A group of people were given a personality test to determine if they were Type A or Type B. the results are shown below Type A M
FinnZ [79.3K]

Answer:

Below<3

Step-by-step explanation:

Type a : 55 75

Type b:48 22

=  P(Male | Type B)> P(Male or Type B)

8 0
3 years ago
Given a≠±b and a^2−b^2 / a+b =12, find a−b.<br> pls hlep
Readme [11.4K]

Answer:

a - b = 12

Step-by-step explanation:

Given

\frac{a^2-b^2}{a+b} = 12 ← factor the numerator

a² - b² ← is a difference of squares and factors as

a² - b² = (a - b)(a + b)

Thus

\frac{(a-b)(a+b)}{a+b} = 12

Cancel the common factor (a + b) on numerator/ denominator, thus

a - b = 12

7 0
2 years ago
Other questions:
  • A yogurt costs 35 pence. How many yogurts can be bought with 3 pounds?
    7·1 answer
  • Quadrilateral ABCD is a square and the length of BE¯¯¯¯¯ is 6 cm.
    13·2 answers
  • What is 8 divided by 2.5 (In fraction form)
    7·1 answer
  • 1/7 divided by what gives you 14
    10·1 answer
  • What is 2y -5x +4=o in y intercept form?
    10·2 answers
  • Need help on this math problem!!!
    5·1 answer
  • Find the equation of the line Which passes through ( -4,-2) and it is parallel to 2y-6x-3 =0
    6·1 answer
  • Help me find answer please very much lost and its a test:(((will give brainiest or w.e it is
    11·1 answer
  • I need help!!! Please Help me
    13·2 answers
  • Solve the system of equations.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!