Answer:
a
Step-by-step explanation:
the two lines intercept at 1,-2
The cost of 0.5 kg of bananas is 393.60 Colones as per the given conversion rates
Conversion rate of 1 USD to Costa Rican Colones = 518 Colones
The conversion rate of kg to pounds given in the question: 1 kg = 2.2025 lbs
Cost of one pound of bananas = $0.69
Bananas required to be purchased = 0.5kg
Converting 0.5kg bananas to pounds = 0.5*2.2025 = 1.10125 pounds
Cost of 1.10125 pound of bananas in dollars = 1.10125*0.69 = 0.7598
Cost of 1.1025 pounds of bananas in Colones = 0.7598*518 = 393.60 Colones
Hence, the cost is 393.60
Therefore, the cost of 0.5 kg bananas in Colones is 393.60 Colones
Learn more about conversion rate:
brainly.com/question/2274822
#SPJ1
Answer:
17
Step-by-step explanation:
4 × 3² = 36
2 × 7 = 14
36 ÷ 12 = 3
3 ± 14 = 17

Differentiate both sides with respect to <em>x</em>, assuming <em>y</em> = <em>y</em>(<em>x</em>).




Solve for d<em>y</em>/d<em>x</em> :



If <em>y</em> ≠ 0, we can write

At the point (1, 1), the derivative is

Answer:
I think is 8.787e+6 cubic inches.