B) glucose (get it glycolysis?) it starts with glucose and ends with 2 pyruvic acids
Answer:
Yes
Explanation:
Range rule of thumb predicts the Range to be a multiple of 4 of the standard deviation or to be four times the standard deviation. Making the usual values equal to 2 standard deviations distanct of the mean of the data distribution.
In a given distribution with mean and standard deviation that is obtained, the usual values in mean (as seen in the attached image).
2*standard deviation and mean + 2*standard deviation.
If the data point is not up to the mean
- 2* standard deviation is taken to be significantly low.
If the data point is more than the mean
+ 2*standard deviation is taken to be significantly high.
Let's take the xbar to be the mean and s as standard deviaiton
Given,
mean, xbar = 1116.2
standard deviation, s =127.7
The range rule of thumb shows that the usual values are within 2 standard deviations from the mean
Lower boundary
= xbar - 2s
= 1116.2 - 2(127.7)
= 860.8
Upper boundary
= xbar + 2s
= 1116.2 + 2(127.7)
= 1371.6
We should note that 1411.6 is not between 860.8 and 1371.6, which connotes that 1411.6cm^3 is unusually high.
Answer:
The different possible genotypes are AA, AO, BB, BO, AB, and OO. These are derived according to the A, B and O blood group model.
The table is given below:
Blood Type Genotype
Blood Type A Genotypes AA or AO
Blood Type B Genotypes BB or BO
Blood Type AB Genotype AB
Blood Type O Genotype OO
The alleles A and B exhibit a greater dominance than O. This is the reason why the Parent of Blood type A will form the Genotype AO.
Answer:
Here are the answers:
a. 4 Cell determination as an issue in the *rest is missing*
b. 4 They assumed that different ways of separating an embryo into two parts would be equivalent as far as the fate of the two parts was concerned.
c. 4 I and III only
Explanation:
The passage demonstrates the importance of two factors in the development of an embryo: cleavage planes of division of embryonic cells and cell differentiation.
Cleavage Planes:
Cleavage basically refers to the division of the zygote into a large number of cells called blastomeres. Cleavage planes are geometrical lines or orientations along which cleavage takes place. Since, all embryonic cells are the precursors of some type of body cells, the cleavage planes determine if the cells are adequate for growth and development.
Cell Differentiation:
Cell differentiation is the transition of an undifferentiated cell into a specialized one. For example, stem cells are undifferentiated cells that develop into progenitor cells that mature into a specific cell lineage. For an embryo to regenerate, the presence of adequate embryonic stem cells is crucial. Embryonic stem cells are present in abundance before the gastrulation phase of embryonic development, after which they rapidly start differentiating.
Gregor Mendal is known as the father of genetics. Mendal while a monk, used math to discover the basics of heredity by crossing pea plants with different characteristics for the f1 generation but when he crossed the f1 generation with a different pea plant he realized the traits that were in the original crossing to get f1 generation didn't show up until the f2 generation.