Answer: there would be 52 yellow marbles
Step-by-step explanation:
Ok we know that there is 65 marbles in total? Right? So then we’d take 65 and think, what could we divide this by and start guessing and estimating numbers. (I guessed 5, one because it’s divisible by 65, two there is 5 times more yellow marbles than red marbles.) So 5 divided by 65 is 13. But, in order to find the amount of yellow marbles, we need to subtract the whole number by the amount of red marbles. (So 65-13 =?) if you subtract that you get 52 yellow marbles. :)
Answer: So what is two plus two plus two?
Well let me demonstrate. Take 2 cookies for example, your friend supplements 2 more cookies and there you have it 4 cookies. So two and two cookies are 4 cookies. Thus, 2+2=4
Step-by-step explanation: Hope I helped you out <3
-Carrie
M1= -5 , m2 = 5 inorder to get this you move the constant to the right take the root of both sides separate the solutions and you should get m1= -5, m2 =5
I think the answer is going to be 3s
Answer:
x = 10/√2 ≈ 7.07
Step-by-step explanation:
Comenzaremos por dividir el triángulo en dos partes y definir H, como en la figura adjunta.
Aplicando el teorema de Tales, sabemos que:

También sabemos que, dado que el tirángulo menor es la mitad que el triángulo mayor, la relación entre áreas es:

Dado que formamos dos triángulos rectángulos, podemos despejar el valor de H como:

Podemos entonces despejar x de la siguiente manera:
