1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ser-zykov [4K]
3 years ago
15

Please help me solve this

Mathematics
2 answers:
atroni [7]3 years ago
5 0

Answer:

<u>1st pic:</u>

x = 60

y = 50

<u>2nd pic</u>:

y = 8

∠W = 28

∠Y = 128 degrees

∠X = 24

Step-by-step explanation:

<u>first pic:</u>

to find x, subtract 120 from 180 ⇒ 180 - 120 = 60

to find y, add 60 & 70 & subtract the sum from 180 ⇒ 180 - (60 + 70) = 50

<u>2nd pic:</u>

to find ∠Y, subtract 52 from 180:

180 - 52 = 128

to find y, use the following equation:

3y + 4y - 4 + 128 = 180

combine like terms:

7y + 124 = 180

subtract 124 from each side:

7y + 124 - 124 = 180 - 124

7y = 56

divide 7 on both sides:

\frac{7y}{7} = \frac{56}{7}

y = 8

now we can find angles W and X

∠W = 4y - 4

we know that y = 8 so just substitute 8 for y

∠W = 4 x 8 - 4

∠W = 28

∠X = 3y

likewise, subtitute 8 for y

∠X = 3 x 8

∠W = 24

to check, add all angles and if they add up to 180, then its right:

24 + 28 + 128 = 180

180 = 180

WINSTONCH [101]3 years ago
5 0

Step-by-step explanation:

<em>here's</em><em> your</em><em> </em><em>solution</em>

<em>=</em><em>></em><em> </em><em>for</em><em> </em><em>first</em><em> </em><em>figure</em><em> </em><em>,</em><em> </em><em>(</em><em>x </em><em>+</em><em> </em><em>1</em><em>2</em><em>0</em><em>°</em><em> </em><em>)</em><em> </em><em>=</em><em> </em><em>1</em><em>8</em><em>0</em><em>°</em><em> </em><em> </em><em> </em><em>[</em><em> </em><em>linear</em><em> pair</em><em>]</em>

<em>=</em><em>></em><em> </em><em> </em><em>x </em><em>=</em><em> </em><em>1</em><em>8</em><em>0</em><em>°</em><em> </em><em>-</em><em> </em><em>1</em><em>2</em><em>0</em><em>°</em>

<em>=</em><em>></em><em> </em><em>x </em><em>=</em><em> </em><em>6</em><em>0</em><em>°</em>

<em>=</em><em>></em><em> </em><em>now </em><em>,</em><em> </em><em>we </em><em>know</em><em> </em><em>sum </em><em>of </em><em>all </em><em>angles</em><em> of</em><em> </em><em>traingle</em><em> </em><em>=</em><em> </em><em>1</em><em>8</em><em>0</em><em>°</em>

<em>=</em><em> </em><em>></em><em>so,</em><em> </em><em>6</em><em>0</em><em>°</em><em> </em><em>+</em><em> </em><em>7</em><em>0</em><em>°</em><em> </em><em>+</em><em> </em><em>y </em><em>=</em><em> </em><em>1</em><em>8</em><em>0</em><em>°</em>

<em>=</em><em>></em><em> </em><em> </em><em>y=</em><em> </em><em>1</em><em>8</em><em>0</em><em>°</em><em> </em><em>-</em><em> </em><em>1</em><em>3</em><em>0</em><em>°</em><em> </em>

<em>=</em><em>></em><em> </em><em>y </em><em>=</em><em> </em><em>5</em><em>0</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em>now </em><em>in </em><em>figure</em><em> </em><em>second</em><em> </em>

<em> </em><em> </em>

<em>=</em><em>></em><em> </em><em>4</em><em>y</em><em> </em><em>-</em><em> </em><em>4</em><em> </em><em>+</em><em> </em><em>3</em><em>y</em><em> </em><em>=</em><em> </em><em>5</em><em>2</em><em>°</em><em> </em><em>[</em><em> </em><em>exterior</em><em> </em><em>angle </em><em>equal</em><em> to</em><em> </em><em>sum </em><em>of </em><em>two </em><em>opposite</em><em> </em><em>interior</em>

<em>=</em><em>></em><em> </em><em>7</em><em>y</em><em> </em><em>-</em><em> </em><em>4</em><em> </em><em>=</em><em> </em><em>5</em><em>2</em><em>°</em>

<em>=</em><em>></em><em> </em><em>7</em><em>y</em><em> </em><em>=</em><em> </em><em>5</em><em>2</em><em>°</em><em> </em><em>+</em><em> </em><em>4</em><em>°</em>

<em> </em><em>=</em><em>></em><em> </em><em>7</em><em>y</em><em> </em><em>=</em><em> </em><em>5</em><em>6</em><em>°</em>

<em>=</em><em>></em><em> </em><em>y </em><em>=</em><em> </em><em>5</em><em>6</em><em>°</em><em>/</em><em>7</em>

<em>=</em><em>></em><em> </em><em>8</em><em>°</em>

<em>hope</em><em> it</em><em> helps</em>

You might be interested in
1. The expression 11x2 - 12x - 10 has ___ terms and a constant of ___.
Illusion [34]
1.  3,-10

2. 10x + y

3. 2x - 3y


6 0
4 years ago
Read 2 more answers
5. y = (x + 5)2 – 25
Oksana_A [137]

Answer:

0

Step-by-step explanation:

25+x=25x

25-25=0

y=0

4 0
3 years ago
Can someone help me please
Ahat [919]
This is a black screen!!!!
5 0
3 years ago
Of the Students that attended Roosevelt Elementary 6/8 of the school play a sport. Of the students are playing a sport 3/5 of th
soldier1979 [14.2K]

Answer:

\frac{9}{20} students.

Step-by-step explanation:

We have been given that of the students that attended Roosevelt Elementary 6/8 of the school play a sport. Of the students are playing a sport 3/5 of the students are also involved in the drama club.

To find the students are both play a sport and a part of the drama club, we need to find 3/5 part of 6/8 as:

\text{Students who play a sport and a part of the drama club}=\frac{6}{8}\times \frac{3}{5}

\text{Students who play a sport and a part of the drama club}=\frac{3}{4}\times \frac{3}{5}

\text{Students who play a sport and a part of the drama club}=\frac{3\times 3}{4\times 5}

\text{Students who play a sport and a part of the drama club}=\frac{9}{20}

Therefore, \frac{9}{20} students play sport and part of the drama club.

5 0
3 years ago
The amount of time that people spend at Grover Hot Springs is normally distributed with a mean of 73 minutes and a standard devi
Vesnalui [34]

Answer:

(a) X\sim N(\mu = 73, \sigma = 16)

(b) 0.7910

(c) 0.0401

(d) 0.6464

Step-by-step explanation:

Let <em>X</em> = amount of time that people spend at Grover Hot Springs.

The random variable <em>X</em> is normally distributed with a mean of 73 minutes and a standard deviation of 16 minutes.

(a)

The distribution of the random variable <em>X</em> is:

X\sim N(\mu = 73, \sigma = 16)

(b)

Compute the probability that a randomly selected person at the hot springs stays longer than 60 minutes as follows:

P(X>60)=P(\frac{X-\mu}{\sigma}>\frac{60-73}{16})\\=P(Z>-0.8125)\\=P(Z

*Use a <em>z</em>-table for the probability.

Thus, the probability that a randomly selected person at the hot springs stays longer than an hour is 0.7910.

(c)

Compute the probability that a randomly selected person at the hot springs stays less than 45 minutes as follows:

P(X

*Use a <em>z</em>-table for the probability.

Thus, the probability that a randomly selected person at the hot springs stays less than 45 minutes is 0.0401.

(d)

Compute the probability that a randomly person spends between 60 and 90 minutes at the hot springs as follows:

P(60

*Use a <em>z</em>-table for the probability.

Thus, the probability that a randomly person spends between 60 and 90 minutes at the hot springs is 0.6464

6 0
3 years ago
Other questions:
  • Which is the simplified form of the equation 8p + 4 = -p + 7 + 2p + 3p ?
    10·1 answer
  • Which of the following equations would graph a line parallel to 3y=2x-x+5
    7·1 answer
  • In 36 years, Ishaan will be 3 times as old as he is right now. How old is he right now?
    13·2 answers
  • There are eight pints of lemonade at a party. An equal amount of lemonade is poured into each of fifteen glasses. Which of the f
    7·1 answer
  • Solve by factorising<br> x^{2} + 8x + 15 = 0
    9·2 answers
  • The table shows the number of books each student read this month. Move bars to the graph to show data.
    7·1 answer
  • David has counters. Lisa has 5 more counters than David. Samia has 4 times as many counters as David. The total number of counte
    12·1 answer
  • 5.08​, 1.99​, 4.54​, 4.83​, 3.2​, 1.99​, 4.36​, 4.8​, 4.78<br><br> What is the median?
    12·1 answer
  • Please help!!!!!!!!!!!
    11·1 answer
  • Alison has three times as many dimes as quarters in her purse. She has $9.35 altogether. How many coins of each type does she ha
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!