Answer:
![\displaystyle 1\frac{119}{250}\:liter](https://tex.z-dn.net/?f=%5Cdisplaystyle%201%5Cfrac%7B119%7D%7B250%7D%5C%3Aliter)
![\displaystyle 7,5\:sleps](https://tex.z-dn.net/?f=%5Cdisplaystyle%207%2C5%5C%3Asleps)
![\displaystyle 37,3\:sleps](https://tex.z-dn.net/?f=%5Cdisplaystyle%2037%2C3%5C%3Asleps%20)
Step-by-step explanation:
![\displaystyle 1\frac{119}{250} = \frac{1476}{1000}](https://tex.z-dn.net/?f=%5Cdisplaystyle%201%5Cfrac%7B119%7D%7B250%7D%20%3D%20%5Cfrac%7B1476%7D%7B1000%7D)
![\displaystyle 1\frac{1}{13} \times 7 = 7\frac{7}{13} ≈ 7,538461538 ≈ 7,5](https://tex.z-dn.net/?f=%5Cdisplaystyle%201%5Cfrac%7B1%7D%7B13%7D%20%5Ctimes%207%20%3D%207%5Cfrac%7B7%7D%7B13%7D%20%E2%89%88%207%2C538461538%20%E2%89%88%207%2C5)
![\displaystyle \frac{41}{1\frac{1}{10}} = 37\frac{3}{11} ≈ 37,3](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B41%7D%7B1%5Cfrac%7B1%7D%7B10%7D%7D%20%3D%2037%5Cfrac%7B3%7D%7B11%7D%20%E2%89%88%2037%2C3)
I am joyous to assist you anytime.
Just divide 30 by 6 and you get b=5
Answer:
6 of x and 5 of y
Step-by-step explanation:
x = number of closets of the first type
y = number of closets of the second type
1200 = 100x + 120y
100 = 10x + 8y
10x = 100 - 8y
10x(100 - 8y) + 120y = 1200
1000 - 80y + 120y = 1200
40y = 200
y = 5
100 = 10x + 8×5 = 10x + 40
60 = 10x
x = 6
20x + 24y = max
20×6 + 24×5 = 120 + 120 = 240
![\dfrac{\partial\left(2xy^4+\frac1{x+y^2}\right)}{\partial y}=8xy^3-\dfrac{2y}{(x+y^2)^2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%5Cleft%282xy%5E4%2B%5Cfrac1%7Bx%2By%5E2%7D%5Cright%29%7D%7B%5Cpartial%20y%7D%3D8xy%5E3-%5Cdfrac%7B2y%7D%7B%28x%2By%5E2%29%5E2%7D)
![\dfrac{\partial\left(4x^2y^3+\frac{2y}{x+y^2}\right)}{\partial x}=8xy^3-\dfrac{2y}{(x+y^2)^2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%5Cleft%284x%5E2y%5E3%2B%5Cfrac%7B2y%7D%7Bx%2By%5E2%7D%5Cright%29%7D%7B%5Cpartial%20x%7D%3D8xy%5E3-%5Cdfrac%7B2y%7D%7B%28x%2By%5E2%29%5E2%7D)
so the ODE is indeed exact and there is a solution of the form
. We have
![\dfrac{\partial F}{\partial x}=2xy^4+\dfrac1{x+y^2}\implies F(x,y)=x^2y^4+\ln(x+y^2)+f(y)](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20F%7D%7B%5Cpartial%20x%7D%3D2xy%5E4%2B%5Cdfrac1%7Bx%2By%5E2%7D%5Cimplies%20F%28x%2Cy%29%3Dx%5E2y%5E4%2B%5Cln%28x%2By%5E2%29%2Bf%28y%29)
![\dfrac{\partial F}{\partial y}=4x^2y^3+\dfrac{2y}{x+y^2}=4x^2y^3+\dfrac{2y}{x+y^2}+f'(y)](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20F%7D%7B%5Cpartial%20y%7D%3D4x%5E2y%5E3%2B%5Cdfrac%7B2y%7D%7Bx%2By%5E2%7D%3D4x%5E2y%5E3%2B%5Cdfrac%7B2y%7D%7Bx%2By%5E2%7D%2Bf%27%28y%29)
![f'(y)=0\implies f(y)=C](https://tex.z-dn.net/?f=f%27%28y%29%3D0%5Cimplies%20f%28y%29%3DC)
![\implies F(x,y)=x^2y^3+\ln(x+y^2)=C](https://tex.z-dn.net/?f=%5Cimplies%20F%28x%2Cy%29%3Dx%5E2y%5E3%2B%5Cln%28x%2By%5E2%29%3DC)
With
, we have
![8+\ln9=C](https://tex.z-dn.net/?f=8%2B%5Cln9%3DC)
so
![\boxed{x^2y^3+\ln(x+y^2)=8+\ln9}](https://tex.z-dn.net/?f=%5Cboxed%7Bx%5E2y%5E3%2B%5Cln%28x%2By%5E2%29%3D8%2B%5Cln9%7D)
Answer:
F
Step-by-step explanation:
1m = 100cm
0.8m = 100*0.8 = 80cm