C. cooked noodles and water
because noodles are long and water has no shape or size.
if you have any problems with this answer,
comment and I will fix it.
Thank s!
Answer:
13.4 x 10 raise to power -19 C
Explanation:
. The distance moved by a charge in the direction of a uniform electric field is d= 1.8 cm =0.018 m
. The uniform electric field is E = 214 N/M
, The decrease in electrical potential energy is
d(P.E) = 51.63 x 10 raise to power -19 J
Let the magnitude of the charge of the moving particle be q
which is given by the equation
d(P.E) =qEd
51.63 x 10 power -19 = q(214)(0.018)
51.63 x 10 power -19 =3.852q
by making q the formular,
q = 13.4 x 10 power -19 C
Longitudinal waves have energy that vibrates parallel to the medium - a compression is the region of greatest density and the rarefaction the region of highest density .The rarefaction (much like the maximum amplitude in a transverse wave) has a region of lowest density, typically situated in the exact center of the region.
Answer:
velocity
Explanation:
because the si unit of mass is kg, velocity is m/s, acceleration is m/S2 , moment is kgm2/s . so 5 is given as velocity.
Answer:
<em>F equals 3 N and the object remains stationary</em>. (second option in the list)
Explanation:
For sure to cancel acting forces, F must be 3N pointing up. But with regards to the object stationary or not, the question is tricky. We could have a ZERO net force applied, and the object moving at constant speed, which could still verify Newton's Laws. But considering the first answer option that refers to vertical motion upward where the object could be gaining potential energy, the most accurate response is that the force F has to be 3 N pointing up to make the object in equilibrium, and no motion in the vertical axis.