1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elis [28]
3 years ago
7

There is a skier at the top of a ski slope. The skier has potential energy. What gives the skier his potential energy? A. his sp

eed B. friction C. gravity D. his efficiency
Physics
2 answers:
NeTakaya3 years ago
7 0

Answer:C

Explanation:

Skier at the top of a ski has Potential Energy due to gravity.

Potential Energy is the Energy Possessed by an object when it attains a height concerning some zero level Position.

During the process of attaining the height, some work has to be done against gravity and this energy stored within the object after attaining some height w.r.t relative zero position.                          

vfiekz [6]3 years ago
3 0

The answer is C: gravity

You might be interested in
Find the angle for the third-order maximum for 591 nm wavelength light falling on a diffraction grating having 1460 lines per ce
Marat540 [252]

Answer:

15.32°

Explanation:

We have given the wavelength \lambda =591nm=591\times 10^{-9}m

Diffraction grating is 1460 lines per cm

So  d=\frac{10^{-2}}{1460}=6.71\times 10^{-6}m (as 1 m=100 cm )

For maximum diffraction

dsin\Theta =m\lambda here m is order of diffraction

So 6.71\times 10^{-6}sin\Theta =3\times 591\times 10^{-9}

sin\Theta =0.264

\Theta =15.32^{\circ}

6 0
3 years ago
driving down the highway , you find yourself behind a heavily loaded tomato truck. you follow close behind the truck keeping the
prohojiy [21]

Answer:

The tomato won't hit the car

Explanation:

According to the statement, the car moves at constant speed behind the truck fully loaded with tomatoes, and in the same direction. When a tomato falls from the top of the truck, it should not hit the car as the tomato falls due to the force of gravity, while horizontally has the same speed and in the same direction as the truck.  So we assume that the tomato will fall to the road without touching the car.

Have a nice day!

4 0
3 years ago
Someone help please by providing work and answers please :)
Nastasia [14]
First we gotta use an equation of motion:

d = ut + \frac{1}{2} a {t}^{2}

Our vertical distance d= 100 m, initial vertical speed u = 0 m/s (because velocity is fully horizontal), and vertical acceleration a = 9.8 m/s2 because of gravity. Let's plug it all in!

100 = 0 + \frac{1}{2} (9.8) {t}^{2}

Now we just need to solve for t:

{t}^{2} = \frac{2(100)}{9.8} \\ \\ t = \sqrt{\frac{2(100)}{9.8}}

Hit the calculators, and you'll get 4.5 seconds!
5 0
3 years ago
Which statement describes the endothermic reaction by this graph?
alexgriva [62]

Answer:

B

endothermic: heat taking in

exothermic: heat given out

8 0
3 years ago
Read 2 more answers
At one instant, the center of mass of a system of two particles is located on the x-axis at 2.0 cm and has a velocity of (5.0 m/
Nata [24]

Answer:

Explanation:

Given that,

At one instant,

Center of mass is at 2m

Xcm = 2m

And velocity =5•i m/s

One of the particle is at the origin

M1=? X1 =0

The other has a mass M2=0.1kg

And it is at rest at position X2= 8m

a. Center of mass is given as

Xcm = (M1•X1 + M2•X2) / (M1+M2)

2 = (M1×0 + 0.1×8) /(M1 + 0.1)

2 = (0+ 0.8) /(M1 + 0.1)

Cross multiply

2(M1+0.1) = 0.8

2M1 + 0.2 =0.8

2M1 = 0.8-0.2

2M1 = 0.6

M1 = 0.6/2

M1 = 0.3kg

b. Total momentum, this is an inelastic collision and it momentum after collision is given as

P= (M1+M2)V

P = (0.3+0.1)×5•i

P = 0.4 × 5•i

P = 2 •i kgm/s

c. Velocity of particle at origin

Using conversation of momentum

Momentum before collision is equal to momentum after collision

P(before) = M1 • V1 + M2 • V2

We are told that M2 is initially at rest, then, V2=0

So, P(before) = 0.3V1

We already got P(after) = 2 •i kgm/s in part b of the question

Then,

P(before) = P(after)

0.3V1 = 2 •i

V1 = 2/0.3 •i

V1 = 6 ⅔ •i m/s

V1 = 6.667 •i m/s

4 0
3 years ago
Other questions:
  • The collision of two plates causes the formation of
    11·1 answer
  • The escape speed from an object is v2 = 2GM/R, where M is the mass of the object, R is the object's starting radius, and G is th
    6·1 answer
  • A man is walking while riding a train. He says he is moving at 2 mph. A woman standing on a platform at a train station says the
    13·1 answer
  • How much work, in N*m, is done when a 10.0 N force moves an object 2.5 m?
    9·1 answer
  • HELP ASAP
    6·2 answers
  • A small toy cart equipped with a spring bumper rolls toward a wall with a speed of v . The cart rebounds from the wall, with the
    9·1 answer
  • An element consists of two isotopes. The abundance of one isotope is 60.40% and its atomic mass is 68.9257 u. The atomic mass of
    15·2 answers
  • Three equal 1.60-μCμC point charges are placed at the corners of an equilateral triangle with sides 0.800 mm long. What is the p
    11·1 answer
  • Describe the type of energy transfers that occur in photosynthesis
    12·1 answer
  • A particle moving along the y-axis has the potential energy u =4y3j, where y is in m. what is the y-component of the force on th
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!