Write the equations in matrix,
![\left[\begin{array}{ccc}5&-1&1\\1&2&-1\\2&3&-3\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\5\\5\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C1%262%26-1%5C%5C2%263%26-3%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C5%5C%5C5%5Cend%7Barray%7D%5Cright%5D%20)
Using row transformation,
R₂ <---> R₃
![\left[\begin{array}{ccc}5&-1&1\\2&3&-3\\1&2&-1\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\5\\5\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C2%263%26-3%5C%5C1%262%26-1%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C5%5C%5C5%5Cend%7Barray%7D%5Cright%5D%20)
Using,
R₂ ---> R₂ - 2R₃
![\left[\begin{array}{ccc}5&-1&1\\0&-1&-1\\1&2&-1\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\-5\\5\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C0%26-1%26-1%5C%5C1%262%26-1%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C-5%5C%5C5%5Cend%7Barray%7D%5Cright%5D%20)
Using,
R₂ --- > (-1)R₂
![\left[\begin{array}{ccc}5&-1&1\\0&1&1\\1&2&-1\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\5\\5\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C0%261%261%5C%5C1%262%26-1%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C5%5C%5C5%5Cend%7Barray%7D%5Cright%5D%20)
Using row transformation,
R₂ <----> R₃
![\left[\begin{array}{ccc}5&-1&1\\1&2&-1\\0&1&1\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\5\\5\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C1%262%26-1%5C%5C0%261%261%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C5%5C%5C5%5Cend%7Barray%7D%5Cright%5D%20)
Using,
R₂ ---> R₂ - R₁/5
![\left[\begin{array}{ccc}5&-1&1\\0&11/5&-6/5\\0&1&1\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\21/5\\5\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C0%2611%2F5%26-6%2F5%5C%5C0%261%261%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C21%2F5%5C%5C5%5Cend%7Barray%7D%5Cright%5D%20)
Using,
R₃ ---> R₃ - 5R₂/11
![\left[\begin{array}{ccc}5&-1&1\\0&11/5&-6/5\\0&0&17/11\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}4\\21/5\\34/11\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%261%5C%5C0%2611%2F5%26-6%2F5%5C%5C0%260%2617%2F11%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C21%2F5%5C%5C34%2F11%5Cend%7Barray%7D%5Cright%5D%20)
∴ 5x-y+z = 4 ====(i)
11y-6z = 21 === (ii)
17z=34 === (iii)
from iii,
z=2.
Plug z=2 in ii to get y,
∴y=3.
Plug y and z values in i to get x,
∴x=1
Therefore the solution to the system of equations is (1,3,2)
Volume is length times width times height so the closet's volume is 3x3x7 which equals 63 cubic feet.
Because 63 is less than 67, she can not fix 67 boxes in her closet.
What is 40/100 as a decimal?
To write 40/100 as a decimal you have to divide numerator by the denominator of the fraction.
We divide now 40 by 100 what we write down as 40/100 and we get 0.4
And finally we have:
40/100 as a decimal equals <span>0.4</span>
Answer:
False
Step-by-step explanation:
False.
Gross income is the total amount a person earns before any deductions are taken out.
Answer:
(y-6)/6 = x
Step-by-step explanation:
y+4x=10x-6
Subtract 4x from each side
y+4x-4x=10x-4x-6
y = 6x-6
Add 6 to each side
y +6 = 6x-6+6
y+6 = 6x
Divide by 6
(y-6)/6 = 6x/6
(y-6)/6 = x