Answer:
This is jibberish
Step-by-step explanation:
Just language please and thanks
Theoretical probability is the likelihood of a certain event occurring calculated based on all the possible outcomes. (Theorizing about the probability of a certain occurrence)
Experimental probability is the likelihood of a certain event occurring calculated by performing trials of an activity and recording the number of times an event occurs, then dividing the total number of even occurrences by total number of trials. (Experimenting to find probability of a certain occurrence)
Answer:
If the ratio is 7:5 and there are 42 girls, then you are multiplying by 6. 5 x 6 = 30. 30 boys participated.
Step-by-step explanation:
There are 30 boys in the competition.
Step-by-step explanation:
Given : The ratio of girls to boys who participated in the quiz bowl was 7:5. There were 42 girls in the competition.
To find : How many boys participated?
Solution : Let x be the number of boys in the competition.
There are 42 girls in the competition.
The ratio form by girls to boys is 42 : x
The ratio of girls to boys who participated in the quiz bowl was 7 : 5.
Solving the two ratios,
Therefore, There are 30 boys in the competition.
Answer:
13/36
Step-by-step explanation:
1 - 2/3 equals 1/3 which is inside the parenthesis
square the number in parenthesis (1/3) and it equals 1/9
multiply the 2 fractions 1/4 and 1/9 to get 1/36
finally add 1/3 with 1/36
12/36 + 1/36 would equal 13/36
The given proof of De Moivre's theorem is related to the operations of
complex numbers.
<h3>The Correct Responses;</h3>
- Step C: Expanding and collecting like terms
- Step D: Trigonometric formula for the cosine and sine of the sum of two numbers
<h3>Reasons that make the above selection correct;</h3>
The given proof is presented as follows;
![\mathbf{\left[cos(\theta) + i \cdot sin(\theta) \right]^{k + 1}}](https://tex.z-dn.net/?f=%5Cmathbf%7B%5Cleft%5Bcos%28%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28%5Ctheta%29%20%5Cright%5D%5E%7Bk%20%2B%201%7D%7D)
- Step A: By laws of indices, we have;
![\left[cos(\theta) + i \cdot sin(\theta) \right]^{k + 1} = \mathbf{\left[cos(\theta) + i \cdot sin(\theta) \right]^{k} \cdot \left[cos(\theta) + i \cdot sin(\theta) \right]}](https://tex.z-dn.net/?f=%5Cleft%5Bcos%28%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28%5Ctheta%29%20%5Cright%5D%5E%7Bk%20%2B%201%7D%20%3D%20%5Cmathbf%7B%5Cleft%5Bcos%28%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28%5Ctheta%29%20%5Cright%5D%5E%7Bk%7D%20%5Ccdot%20%5Cleft%5Bcos%28%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28%5Ctheta%29%20%5Cright%5D%7D)
![\left[cos(\theta) + i \cdot sin(\theta) \right]^{k} \cdot \left[cos(\theta) + i \cdot sin(\theta) \right] = \mathbf{\left[cos(k \cdot \theta) + i \cdot sin(k \cdot \theta) \right] \cdot \left[cos(\theta) + i \cdot sin(\theta) \right]}](https://tex.z-dn.net/?f=%5Cleft%5Bcos%28%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28%5Ctheta%29%20%5Cright%5D%5E%7Bk%7D%20%5Ccdot%20%5Cleft%5Bcos%28%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28%5Ctheta%29%20%5Cright%5D%20%3D%20%20%5Cmathbf%7B%5Cleft%5Bcos%28k%20%5Ccdot%20%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28k%20%5Ccdot%20%5Ctheta%29%20%5Cright%5D%20%5Ccdot%20%5Cleft%5Bcos%28%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28%5Ctheta%29%20%5Cright%5D%7D)
- Step B: By expanding, we have;
![\left[cos(k \cdot \theta) + i \cdot sin(k \cdot \theta) \right] \cdot \left[cos(\theta) + i \cdot sin(\theta) \right] = cos(k \cdot \theta) \cdot cos(\theta) - sin(k \cdot \theta) \cdot sin(\theta) + i \cdot \left [sin(k \cdot \theta) \cdot cos(\theta) + cos(k \cdot \theta) \cdot sin(\theta) \right]](https://tex.z-dn.net/?f=%5Cleft%5Bcos%28k%20%5Ccdot%20%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28k%20%5Ccdot%20%5Ctheta%29%20%5Cright%5D%20%5Ccdot%20%5Cleft%5Bcos%28%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28%5Ctheta%29%20%5Cright%5D%20%3D%20cos%28k%20%5Ccdot%20%5Ctheta%29%20%5Ccdot%20cos%28%5Ctheta%29%20-%20sin%28k%20%5Ccdot%20%5Ctheta%29%20%5Ccdot%20sin%28%5Ctheta%29%20%2B%20i%20%20%5Ccdot%20%5Cleft%20%5Bsin%28k%20%5Ccdot%20%5Ctheta%29%20%5Ccdot%20cos%28%5Ctheta%29%20%2B%20cos%28k%20%5Ccdot%20%5Ctheta%29%20%5Ccdot%20sin%28%5Ctheta%29%20%5Cright%5D)
- Step D: From trigonometric addition formula, we have;
cos(A + B) = cos(A)·cos(B) - sin(A)·sin(B)
sin(A + B) = sin(A)·cos(B) + sin(B)·cos(A)
Therefore;
![cos(k \cdot \theta) \cdot cos(\theta) - sin(k \cdot \theta) \cdot sin(\theta) + i \cdot \left [sin(k \cdot \theta) \cdot cos(\theta) + cos(k \cdot \theta) \cdot sin(\theta) \right] = \mathbf{ cos(k \cdot \theta + \theta) + i \cdot sin(k \cdot \theta + \theta)}](https://tex.z-dn.net/?f=cos%28k%20%5Ccdot%20%5Ctheta%29%20%5Ccdot%20cos%28%5Ctheta%29%20-%20sin%28k%20%5Ccdot%20%5Ctheta%29%20%5Ccdot%20sin%28%5Ctheta%29%20%2B%20i%20%20%5Ccdot%20%5Cleft%20%5Bsin%28k%20%5Ccdot%20%5Ctheta%29%20%5Ccdot%20cos%28%5Ctheta%29%20%2B%20cos%28k%20%5Ccdot%20%5Ctheta%29%20%5Ccdot%20sin%28%5Ctheta%29%20%5Cright%5D%20%3D%20%5Cmathbf%7B%20cos%28k%20%5Ccdot%20%5Ctheta%20%2B%20%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28k%20%5Ccdot%20%5Ctheta%20%20%2B%20%5Ctheta%29%7D)
Learn more about complex numbers here:
brainly.com/question/11000934