Given Information:
Total cards = 108
Red cards = 25
yellow cards = 25
Blue cards = 25
Green cards = 25
Wild cards = 8
Required Information:
Probability that a hand will contain exactly two wild cards in a seven-hand game = ?
Answer:
P = (₈C₂*₁₀₀C₅)/₁₀₈C₇
Step-by-step explanation:
The required probability is given by
P = number of ways of interest/total number of ways
The total number of ways of dealing a seven-card hand is
₁₀₈C₇
We want to select exactly 2 wild cards and the total wild cards are 8 so the number of ways of this selection is
₈C₂
Since the game is seven-card hand, we have to get the number of ways to select remaining 5 cards out of (108 - 8 = 100) cards.
₁₀₀C₅
Therefore, the setup for this problem becomes
P = number of ways of interest/total number of ways
P = (₈C₂*₁₀₀C₅)/₁₀₈C₇
This is the required setup that we can type into our calculators to get the probability of exactly two wild cards in a seven-hand card game with 8 wild cards and 108 total cards.
Answer:
8.17307692308
Step-by-step explanation:
Answer:
The answer is false
Hope this helps !
Mark me brainliest if I'm right :)
Answer:
52 X 60 equals 3120, divide that by 100, to get 31.20, and then do 52.00-31.20 to 20.8. plus sales tax, would equal, 20.8 X 6.25% = 1.3. add that onto the original answer to get the final answer, 22.1. Hope this helps! :)