Answer:
Perimeter = 18.7 units
Area = 13.5 units²
Step-by-step explanation:
Perimeter of ADEC = AD + DE + EC + AC
Length of AD = 3 units
By applying Pythagoras theorem in ΔDBE,
DE² = DB² + BE²
DE² = 3² + 3²
DE = √18
DE = 4.24 units
Length of EC = 3 units
By applying Pythagoras theorem in ΔABC,
AC² = AB² + BC²
AC² = 6² + 6²
AC = √72
AC = 8.49 units
Perimeter of ADEC = 3 + 4.24 + 3 + 8.49
= 18.73 units
≈ 18.7 units
Area of ADEC = Area of ΔABC - Area of ΔBDE
Area of ΔABC = 
= 
= 18 units²
Area of ΔBDE = 
= 
= 4.5 units²
Area of ADEC = 18 - 4.5
= 13.5 units²
Answer:
21 With glasses
Step-by-step explanation:
32/20=1.6
1.6•7=11.2 Without Glasses
1.6•13=20.8 With Glasses
20.8 rounded to nearest whole number=21
Answer:
47°
Step-by-step explanation:
angles x and 133 are supplementary, so they add up to 180°
subtract 133 from 180 to get 47
Answer: 49/9
Step-by-step explanation:
9x5=45
45+4=49
<span>since sin and cos = each other at pi/4; take your integrals from 0 to pi/4
</span><span>[S] cos(t) dt - [S] sin(t) dt ;[0,pi/4]
</span>
<span>to revolve it around the x axis;
we do a sum of areas
[S] 2pi [f(x)]^2 dx
</span>
<span>take the cos first and subtract out the sin next; like cutting a hole out of a donuts.
</span><span>pi [S] cos(x)^2 dx - [S] sin(x)^2 dx ; [0,pi/4]
</span>
<span>cos(2t) = 2cos^2 - 1
cos^2 = (1+cos(2t))/2
</span>
<span>1/sqrt(2) - (-1/sqrt(2) +1)
1/sqrt(2) + 1/sqrt(2) -1
(2sqrt(2) - sqrt(2))/sqrt(2) = sqrt(2)/sqrt(2) = 1</span>