We're told that



where the last fact is due to the law of total probability:



so that
and
are complementary.
By definition of conditional probability, we have



We make use of the addition rule and complementary probabilities to rewrite this as


![\implies P(B)-[1-P(A\cup B)^C]=[1-P(B)]-P(A\cup B^C)](https://tex.z-dn.net/?f=%5Cimplies%20P%28B%29-%5B1-P%28A%5Ccup%20B%29%5EC%5D%3D%5B1-P%28B%29%5D-P%28A%5Ccup%20B%5EC%29)
![\implies2P(B)=2-[P(A\cup B)^C+P(A\cup B^C)]](https://tex.z-dn.net/?f=%5Cimplies2P%28B%29%3D2-%5BP%28A%5Ccup%20B%29%5EC%2BP%28A%5Ccup%20B%5EC%29%5D)
![\implies2P(B)=[1-P(A\cup B)^C]+[1-P(A\cup B^C)]](https://tex.z-dn.net/?f=%5Cimplies2P%28B%29%3D%5B1-P%28A%5Ccup%20B%29%5EC%5D%2B%5B1-P%28A%5Ccup%20B%5EC%29%5D)


By the law of total probability,


and substituting this into
gives
![2P(B)=P(A\cup B)+[P(B)-P(A\cap B)]](https://tex.z-dn.net/?f=2P%28B%29%3DP%28A%5Ccup%20B%29%2B%5BP%28B%29-P%28A%5Ccap%20B%29%5D)


Answer:
Ummmmm none I guess
Step-by-step explanation:
rawr
Answer:
And we can find this probability using excel or the normal standard tabe and we got:
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the temperatures of a population, and for this case we know the distribution for X is given by:
Where
and
We are interested on this probability
And the best way to solve this problem is using the normal standard distribution and the z score given by:
If we apply this formula to our probability we got this:
And we can find this probability using excel or the normal standard tabe and we got:
The reciprocal of a fraction is only a whole number when
the numerator of the original fraction is ' 1 ' or a factor of
the denominator (original fraction is not in simplest form).
Any other time, the reciprocal of the fraction is another fraction.
(It'll be an improper fraction, and can be written as a mixed number.)
The reciprocal of a fraction is just the same fraction
turned upside down.
-- The reciprocal of 1/5 is 5/1 or just 5 .
(Original numerator is ' 1 '.)
-- The reciprocal of 5/25 is 25/5 or just 5 .
(Original fraction is not in simplest form.)
-- The reciprocal of 5/7 is 7/5 , or 1 and 2/5 .