39×2÷6=13
13-5=8 mm. The other base of the trapezoid is 8 mm. Let check it:
1/2(8+5)×6
=1/2×13×6
=39 square mm. Hope it help!
Part A:
Given a square with sides 6 and x + 4. Also, given a rectangle with sides 2 and 3x + 4
The perimeter of the square is given by 4(x + 4) = 4x + 16
The area of the rectangle is given by 2(2) + 2(3x + 4) = 4 + 6x + 8 = 6x + 12
For the perimeters to be the same
4x + 16 = 6x + 12
4x - 6x = 12 - 16
-2x = -4
x = -4 / -2 = 2
The value of x that makes the <span>perimeters of the quadrilaterals the same is 2.
Part B:
The area of the square is given by

The area of the rectangle is given by 2(3x + 4) = 6x + 8
For the areas to be the same

Thus, there is no real value of x for which the area of the quadrilaterals will be the same.
</span>
Answer:
(x + 1)² = 7
Step-by-step explanation:
Given:
-2x = x² - 6
We'll start by rearranging it to solve for zero:
x² + 2x - 6 = 0
The first term is already a perfect square so that's fine. Normally, if that term had a non-square coefficient, you would need to multiply all terms a value that would change that constant to a perfect square.
Because it's already square (1), we can simply move to the next step, separating the -6 into a value that can be doubled to give us the 2, the coefficient of the second term. That value will of course be 1, giving us:
x² + 2x + 1 - 1 - 6 = 0
Now can group our perfect square on the left and our constants on the right:
x² + 2x + 1 - 7= 0
x² + 2x + 1 = 7
(x + 1)² = 7
To check our answer, we can solve for x:
x + 1 = ± √7
x = -1 ± √7
x ≈ 1.65, -3.65
Let's try one of those in the original equation:
-2x = x² - 6
-2(1.65) = 1.65² - 6
- 3.3 = 2.72 - 6
-3.3 = -3.28
Good. Given our rounding that difference of 2/100 is acceptable, so the answer is correct.
It is 84 ibs
Explanation
It’s actually easy if you learn 5 minutes of it
But thats the correct answer