(x-5)(x+7).
explanation:
(x-5)(x+7)=0
<=> x-5=0 or x+7=p
<=> x=5 or x=-7
Answer:
The equation which represents the question is 3 1/3
If you are using a calculator, simply enter 16÷72×100 which will give you 22.22 as the answer.
Answer:
a) 0.70
b) 0.82
Step-by-step explanation:
a)
Let M be the event that student get merit scholarship and A be the event that student get athletic scholarship.
P(M)=0.3
P(A)=0.6
P(M∩A)=0.08
P(not getting merit scholarships)=P(M')=?
P(not getting merit scholarships)=1-P(M)
P(not getting merit scholarships)=1-0.3
P(not getting merit scholarships)=0.7
The probability that student not get the merit scholarship is 70%.
b)
P(getting at least one of two scholarships)=P(M or A)=P(M∪A)
P(getting at least one of two scholarships)=P(M)+P(A)-P(M∩A)
P(getting at least one of two scholarships)=0.3+0.6-0.08
P(getting at least one of two scholarships)=0.9-0.08
P(getting at least one of two scholarships)=0.82
The probability that student gets at least one of two scholarships is 82%.
Answer:
x = 10°
Step-by-step explanation:
a). Since, opposite angles of a cyclic quadrilateral are supplementary angles"
Therefore, in cyclic quadrilateral ABDE,
m∠ABD + m∠AED = 180°
110° + m∠AED = 180°
m∠AED = 180° - 110°
= 70°
b). AD = ED [Given]
m∠EAD = m∠AED [Since, opposite angles of equal sides are equal in measure]
m∠EAD = m∠AED = 70°
By triangle sum theorem in ΔABD,
m∠BAD + m∠ABD + m∠ADB = 180°
m∠BAD + 110° + 40° = 180°
m∠BAD = 180 - 150
= 30°
m∠AEB = m∠AED + m∠DAB [By angles addition postulate]
m∠AEB = 70° + 30°
= 100°
By triangle sum theorem in the large triangle,
x° + m∠AEB + m∠EAB = 180°
x° + 100° + 70° = 180°
x = 180 - 170
x = 10°