Answer:
They both have the same slope.
They have different y- intercepts.
They have no solution.
Please let me know, if I am right or wrong. I try my best to give correct answers
Answer:
you maybe can install app photomath
Let call it x
x/4=4/2
->x=8
Call the price of the bike before mark up 'x', then we have:
x + 0.25x = 210
1.25x = 210
x = 168
Therefore, the bike cost $168 before 25% price increase.
The marginal distribution for gender tells you the probability that a randomly selected person taken from this sample is either male or female, regardless of their blood type.
In this case, we have total sample size of 714 people. Of these, 379 are male and 335 are female. Then the marginal probability mass function would be
![\mathrm{Pr}[G = g] = \begin{cases} \dfrac{379}{714} \approx 0.5308 & \text{if }g = \text{male} \\\\ \dfrac{335}{714} \approx 0.4692 & \text{if } g = \text{female} \\\\ 0 & \text{otherwise} \end{cases}](https://tex.z-dn.net/?f=%5Cmathrm%7BPr%7D%5BG%20%3D%20g%5D%20%3D%20%5Cbegin%7Bcases%7D%20%5Cdfrac%7B379%7D%7B714%7D%20%5Capprox%200.5308%20%26%20%5Ctext%7Bif%20%7Dg%20%3D%20%5Ctext%7Bmale%7D%20%5C%5C%5C%5C%20%5Cdfrac%7B335%7D%7B714%7D%20%5Capprox%200.4692%20%26%20%5Ctext%7Bif%20%7D%20g%20%3D%20%5Ctext%7Bfemale%7D%20%5C%5C%5C%5C%200%20%26%20%5Ctext%7Botherwise%7D%20%5Cend%7Bcases%7D)
where G is a random variable taking on one of two values (male or female).