Answer:
see below
Step-by-step explanation:
If we let X represent the number of bagels produced, and Y the number of croissants, then we want ...
(a) Max Profit = 20X +30Y
(b) Subject to ...
6X +3Y ≤ 6600 . . . . . . available flour
X + Y ≤ 1400 . . . . . . . . available yeast
2X +4Y ≤ 4800 . . . . . . available sugar
_____
Production of 400 bagels and 1000 croissants will produce a maximum profit of $380.
__
In the attached graph, we have shaded the areas that are NOT part of the solution set. (X and Y less than 0 are also not part of the solution set, but are left unshaded.) This approach can sometimes make the solution space easier to understand, since it is white.
The vertex of the solution space that moves the profit function farthest from the origin is the one we are seeking. The point that does that is (X, Y) = (400, 1000).
Ajajajsjsjjsjsjdjdjdjdjd sorry but I need more points

As we know :
Dividend = Divisor × Quotient ( taking remainder as 0 )
So, Quotient = Dividend ÷ Divisor
by using the above relation we can say :
therefore, correct option is C. t ÷ 23
Answer:
not a solution
Step-by-step explanation:
Substitute p = - 2 into the left side of the equation and if equal to the right side then it is a solution.
7(- 2) - 5 = - 14 - 5 = - 19 ≠ 20
Then p = - 2 is not a solution of the equation
Answer:
idk a or c
Step-by-step explanation: