1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
emmainna [20.7K]
2 years ago
11

Evaluate the following definite integral​

Mathematics
1 answer:
mihalych1998 [28]2 years ago
8 0

Answer:

\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}

General Formulas and Concepts:

<u>Symbols</u>

  • e (Euler's number) ≈ 2.71828

<u>Algebra I</u>

  • Exponential Rule [Multiplying]:                                                                     \displaystyle b^m \cdot b^n = b^{m + n}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Definite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

  • U-Solve

Integration by Parts:                                                                                               \displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Exponential Rule - Multiplying]:                                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \int\limits^1_0 {x^5e^{x^3}e} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{x^3}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-solve.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = x^3
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3x^2 \ dx
  3. [<em>u</em>] Rewrite:                                                                                                     \displaystyle x = \sqrt[3]{u}
  4. [<em>du</em>] Rewrite:                                                                                                   \displaystyle dx = \frac{1}{3x^2} \ du

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] U-Solve:                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{3x^2}} \, du
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{x^2}} \, du
  3. [Integral] Simplify:                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^3e^u} \, du
  4. [Integrand] U-Solve:                                                                                      \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {ue^u} \, du

<u>Step 5: integrate Pt. 4</u>

<em>Identify variables for integration by parts using LIPET.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = u
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = du
  3. Set <em>dv</em>:                                                                                                           \displaystyle dv = e^u \ du
  4. [<em>dv</em>] Exponential Integration:                                                                         \displaystyle v = e^u

<u>Step 6: Integrate Pt. 5</u>

  1. [Integral] Integration by Parts:                                                                        \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - \int\limits^1_0 {e^u} \, du \bigg]
  2. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - e^u \bigg| \limits^1_0 \bigg]
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}[ e - e ]
  4. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

You might be interested in
2 to the trird power plus 3 to third power - 3x4 - 5 to the seacond power divid by 5 plus (7x4)
zhenek [66]
I hope this helps ( there is no negatives )

5 0
3 years ago
I need help. Please show work
telo118 [61]
◆ Area related to Circles ◆

Hey !!

Check the attachment.
Hope it helps you :)

7 0
2 years ago
What would my grade be if i had a 76% in the class, then got a 0% on a test worth 70% of my grade?
ExtremeBDS [4]

Answer:

I believe it would be 6

7 0
3 years ago
In the diagram below PQR are point on the circle with centre o and diameter 14cm &lt;PRQ=35° Find the length of the minor arc PQ
Gekata [30.6K]

Answer:

Step-by-step explanation:

I'll draw a quick sketch. It's hard to "see" this kinda of problem w/o a drawing , so start there.   just draw as much as you can from what the problem tells you.

diameter = 14 cm

radius = 7 cm

pi = 3.142

PRQ = 35 °

to find Y use law of sines

sin(70) / Y = sin(55) / 7

sin(70) / sin(55) / 7 = Y  ( I'll use my calculator for all the non standard angles )

sin(70) * 7 / sin(55) = Y   ( and invert and multiply the fraction in the denom )

8.03007 = Y

x = 70 °

if you have questions, and  you should, just put them in the comments , I'll see them later :)

5 0
2 years ago
Mrs. Carson pays Kristen $48 for babysitting six hours and mr.vanquez pays her $67.50 for babysitting nine hours who pays Kriste
brilliants [131]
Mrs Carson gives the better deal, this is becuase when i set up an inequality 48/6 and 67.50/9, i divided 48 by 2 then added 24 to 48 so i could get them both so i can see what they give, so Mrs Carson gives 72 dollars every 9 hours and thats better than 67.50.
5 0
3 years ago
Other questions:
  • Is the number prime or composite?<br><br> 29<br><br> A.prime<br><br> B.composite
    14·1 answer
  • Paula drops a pebble into the ocean from a 120ft high cliff. Use the formula t=h−−√4 to find how many seconds it takes for the p
    8·1 answer
  • A basketball hoop is 10 feet high. How many inches high is a basketball hoop? (1 foot = 12 inches) 11 in. 92 in. 100 in. 120 in.
    10·2 answers
  • Which graph represents -x+ 8y &gt; - 24
    12·1 answer
  • What is the slope of a line parallel to a line with slope 2/3
    5·1 answer
  • 1. which of the following transformations are rigid motions?
    13·2 answers
  • W(x)=-3x-4;find w(7)<br>​
    5·2 answers
  • 20 pages in 4 days = pages per day​
    15·2 answers
  • Pls help me ASAP !!!!!!!!!
    13·1 answer
  • 2. In a class 70 students, 44 like Bookkeeping, 36 like- Commerce, and 17 like both bookkeeping and commere How many student lik
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!