1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
emmainna [20.7K]
2 years ago
11

Evaluate the following definite integral​

Mathematics
1 answer:
mihalych1998 [28]2 years ago
8 0

Answer:

\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}

General Formulas and Concepts:

<u>Symbols</u>

  • e (Euler's number) ≈ 2.71828

<u>Algebra I</u>

  • Exponential Rule [Multiplying]:                                                                     \displaystyle b^m \cdot b^n = b^{m + n}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Definite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

  • U-Solve

Integration by Parts:                                                                                               \displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Exponential Rule - Multiplying]:                                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \int\limits^1_0 {x^5e^{x^3}e} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{x^3}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-solve.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = x^3
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3x^2 \ dx
  3. [<em>u</em>] Rewrite:                                                                                                     \displaystyle x = \sqrt[3]{u}
  4. [<em>du</em>] Rewrite:                                                                                                   \displaystyle dx = \frac{1}{3x^2} \ du

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] U-Solve:                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{3x^2}} \, du
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{x^2}} \, du
  3. [Integral] Simplify:                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^3e^u} \, du
  4. [Integrand] U-Solve:                                                                                      \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {ue^u} \, du

<u>Step 5: integrate Pt. 4</u>

<em>Identify variables for integration by parts using LIPET.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = u
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = du
  3. Set <em>dv</em>:                                                                                                           \displaystyle dv = e^u \ du
  4. [<em>dv</em>] Exponential Integration:                                                                         \displaystyle v = e^u

<u>Step 6: Integrate Pt. 5</u>

  1. [Integral] Integration by Parts:                                                                        \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - \int\limits^1_0 {e^u} \, du \bigg]
  2. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - e^u \bigg| \limits^1_0 \bigg]
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}[ e - e ]
  4. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

You might be interested in
Length of rectangle is 4 m less than 3 times its breadth. If the perimeter of rectangle is 32 m. Find its length and breadth B=1
timama [110]

Answer:

Length = 11m and the Breath = 4m

Step-by-step explanation:

L = 3B - 4

p = 32m

2( L + B ) = 32

L + B = 32/2

L + B = 16

(3B - 4) + B = 16

3B - 4 + B = 16

4B - 4 = 16

4B = 16 + 4

4B = 20

B = 20/4 = 5m

B = 5m

L = 3B - 4

L = 3(5) - 4

L = 15 - 4

L = 11m

please brainliest

6 0
2 years ago
A worker at a factory earns $12 per hour plus 2.50 for each unit produced that hour. The worker earns a total of $27 in one hour
nevsk [136]

Answer:

The total number of units produced is 6  .

Step-by-step explanation:

Given as :

The earning of worker at the factory = $ 12 per hour + $ 2.50 each unit per hour

The total earning of worker per hour = $ 27

Let The total number of unit produced = x

According to question

The wage worker earn per hour + earning  × per unit produced that hour = Total earning of worker per hour

Or, $ 12 per hour + $ 2.50 each unit per hour × x = $ 27

Or, $ 2.50 each unit per hour × x = $ 27 - $ 12

Or,  $ 2.50 each unit per hour × x = $ 15

∴   x = \frac{15}{2.50}

Or, x = 6

Hence The total number of units produced is 6  .   Answer

4 0
3 years ago
Today the temperature is 0 degrees Fahrenheit. The temperature rose
VladimirAG [237]

Answer: -11 degrees Fahrenheit

Step-by-step explanation:

3 0
3 years ago
Help xd <br> -(x+2) =<br> 3(7x - 8)=<br> 7(x+3)-5x<br><br> Thank you!
HACTEHA [7]

Answer:

x=−5

x= 31/21 =1 10/21= 1.476190476

2x+21

hope this helps

3 0
3 years ago
Read 2 more answers
Complete the steps to factor the tens 30 x 40
Harlamova29_29 [7]
1,200 is the answer.
6 0
3 years ago
Read 2 more answers
Other questions:
  • Graph the lines by finding the points of intersection with the axes (intercepts):
    7·1 answer
  • Simplify :<br>Stepwise answer! ​
    11·1 answer
  • PLEASEHELP ME 98 POINTS AND BRAINLIEST TO THE FIRST PERSON
    7·1 answer
  • Calculate the perimeter of this figure<br>to the nearest tenth.​
    15·1 answer
  • Plsss someone help i need help with this
    13·2 answers
  • Need help with this, finding the length of the third side
    11·1 answer
  • A vegetable farmer fills of a wooden crate with of a pound of tomatoes. How many pounds of tomatoes can fit into one crate?
    11·1 answer
  • What percent of 235 is 148.05
    6·1 answer
  • Please help<br> I’ll give brainly
    10·1 answer
  • Evaluate 6x ^ 2 - 4x - 7 when x = 2
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!