1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
emmainna [20.7K]
3 years ago
11

Evaluate the following definite integral​

Mathematics
1 answer:
mihalych1998 [28]3 years ago
8 0

Answer:

\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}

General Formulas and Concepts:

<u>Symbols</u>

  • e (Euler's number) ≈ 2.71828

<u>Algebra I</u>

  • Exponential Rule [Multiplying]:                                                                     \displaystyle b^m \cdot b^n = b^{m + n}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Definite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

  • U-Solve

Integration by Parts:                                                                                               \displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Exponential Rule - Multiplying]:                                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \int\limits^1_0 {x^5e^{x^3}e} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{x^3}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-solve.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = x^3
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3x^2 \ dx
  3. [<em>u</em>] Rewrite:                                                                                                     \displaystyle x = \sqrt[3]{u}
  4. [<em>du</em>] Rewrite:                                                                                                   \displaystyle dx = \frac{1}{3x^2} \ du

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] U-Solve:                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{3x^2}} \, du
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{x^2}} \, du
  3. [Integral] Simplify:                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^3e^u} \, du
  4. [Integrand] U-Solve:                                                                                      \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {ue^u} \, du

<u>Step 5: integrate Pt. 4</u>

<em>Identify variables for integration by parts using LIPET.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = u
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = du
  3. Set <em>dv</em>:                                                                                                           \displaystyle dv = e^u \ du
  4. [<em>dv</em>] Exponential Integration:                                                                         \displaystyle v = e^u

<u>Step 6: Integrate Pt. 5</u>

  1. [Integral] Integration by Parts:                                                                        \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - \int\limits^1_0 {e^u} \, du \bigg]
  2. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - e^u \bigg| \limits^1_0 \bigg]
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}[ e - e ]
  4. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

You might be interested in
Find the measure of angle A.<br> A<br> 7x-1<br> 12x<br> 489
Degger [83]

Answer:

48 degrees

Step-by-step explanation:

7X-1+12x+48=180

19x+47=180

19x=133

x=7

7(7)-1=A

49-1=A

48=A

A is 48 degrees

7 0
3 years ago
IM Not too sure on this. can someone please help me out?
DENIUS [597]
All it is asking is to plug the given x values into the equation (which are 0, 2, 4) and see what you get for y.
4y - 2x =16

4y - 2 (0) = 16
4y = 16
y = 4

4y - 2 (2) = 16
4y - 4 = 16
4y = 20
y = 5

4y - 2 (4) = 16
4y - 8 = 16
4y = 24
y = 6

so D
5 0
3 years ago
Solve 5x - 2 = 13.<br> Please be quick
IceJOKER [234]

Answer:

C. 3

Step-by-step explanation:

5x - 2 = 13

5x = 15

x = 15 ÷ 3

x = 3

8 0
3 years ago
Read 2 more answers
A candle is 9 inches long. Ronnie lights the candle and records the height of the candle, y inches, for x hours.​
DochEvi [55]

In the future, please post the full problem with all included instructions. After doing a quick internet search, I found your problem listed somewhere else. It mentions two parts (a) and (b)

Part (a) asked for the equation of the line in y = mx+b form

That would be y = -2x+9

This is because each time y goes down by 2, x goes up by 1. We have slope = rise/run = -2/1 = -2. This indicates that the height of the candle decreases by 2 inches per hour. The slope represents the rate of change.

The initial height of the candle is the y intercept b value. So we have m = -2 and b = 9 lead us from y = mx+b to y = -2x+9

----------------------------------------------------------------

Part (b) then asks you to graph the equation. Because this is a linear equation, it produces a straight line. We only need 2 points at minimum to graph any line. Let's plot (0,9) and (1,7) on the same xy grid. These two points are the first two rows of the table. Plot those two points and draw a straight line through them. The graph is below

7 0
3 years ago
How can i draw this?
mylen [45]
The green arrow thing is a ray. So, question b. is a ray. So the dot would be B and the arrow would be C. 

3 0
3 years ago
Other questions:
  • if the third term of an arithmetic sequence is 13 and the seventeenth term is -29 what is the eighth term
    10·1 answer
  • a crystal that is 0.12 millimeters long appears to be 60 millimeters long under a microscope what is the power of the microscope
    13·1 answer
  • What is the graph of the function?<br>y=-2×5^x<br>​
    5·2 answers
  • Minas time for running the mile 9.4 minutes. If her friends ran the mile in 11.02 minutes, how much faster was Mina?
    15·1 answer
  • Help plz <br> With steps will give brainliest !!!!
    15·1 answer
  • I need help ASAP please
    11·1 answer
  • . A population of rabbits oscillates 25 above and below an average of 129 during the year, hitting the lowest value in January (
    9·1 answer
  • In triangle ABC, what is the measure of angle C if A = 60°, a = 9, and c = 5?
    12·2 answers
  • 3.
    7·2 answers
  • Multi step equation 12 threw 14 pls
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!