1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
emmainna [20.7K]
3 years ago
11

Evaluate the following definite integral​

Mathematics
1 answer:
mihalych1998 [28]3 years ago
8 0

Answer:

\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}

General Formulas and Concepts:

<u>Symbols</u>

  • e (Euler's number) ≈ 2.71828

<u>Algebra I</u>

  • Exponential Rule [Multiplying]:                                                                     \displaystyle b^m \cdot b^n = b^{m + n}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Definite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

  • U-Solve

Integration by Parts:                                                                                               \displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Exponential Rule - Multiplying]:                                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \int\limits^1_0 {x^5e^{x^3}e} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{x^3}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-solve.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = x^3
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3x^2 \ dx
  3. [<em>u</em>] Rewrite:                                                                                                     \displaystyle x = \sqrt[3]{u}
  4. [<em>du</em>] Rewrite:                                                                                                   \displaystyle dx = \frac{1}{3x^2} \ du

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] U-Solve:                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{3x^2}} \, du
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{x^2}} \, du
  3. [Integral] Simplify:                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^3e^u} \, du
  4. [Integrand] U-Solve:                                                                                      \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {ue^u} \, du

<u>Step 5: integrate Pt. 4</u>

<em>Identify variables for integration by parts using LIPET.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = u
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = du
  3. Set <em>dv</em>:                                                                                                           \displaystyle dv = e^u \ du
  4. [<em>dv</em>] Exponential Integration:                                                                         \displaystyle v = e^u

<u>Step 6: Integrate Pt. 5</u>

  1. [Integral] Integration by Parts:                                                                        \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - \int\limits^1_0 {e^u} \, du \bigg]
  2. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - e^u \bigg| \limits^1_0 \bigg]
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}[ e - e ]
  4. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

You might be interested in
What is the surface area of the triangular prism?
Elanso [62]

Answer:

135 square feet

Step-by-step explanation:

area of base and top=2(1/2×6×2.5)=15 square feet.

area of three faces=(2.5+6+6.5)×8=15×8=120 ft

total surface area=15+120=135 square feet.

4 0
2 years ago
Read 2 more answers
The value of which of these expressions is closest to e?
mars1129 [50]

Answer:

B.

Step-by-step explanation:

Given: expressions

To find: the expression whose value is closest to e

Solution:

Value of e is 2.718

\left ( 1+\frac{1}{19} \right )^{19}=\left ( \frac{20}{19} \right )^{19}=2.65\\\left ( 1+\frac{1}{22} \right )^{22}=\left ( \frac{23}{22} \right )^{22}=2.659\\\left ( 1+\frac{1}{20} \right )^{20}=\left ( \frac{21}{20} \right )^{20}=2.653\\\left ( 1+\frac{1}{21} \right )^{21}=\left ( \frac{22}{21} \right )^{21}=2.656

Therefore, value 2.659 is closest to the value of e.

So, option B. is correct.

7 0
3 years ago
Solve the simultaneous equation:<br>2x+3y=13<br><br>X+2y=9​
Neko [114]

Answer:

2x + 3y = 13

4x - y = -2

In the second equation, subtract 4x from both sides.

-y = -2 - 4x

Divide both sides by -1.

y = 2 + 4x

Put this into the first equation in place of y.

2x + 3(2 + 4x) = 13

Multiply everything in the parenthesis by 3.

2x + 6 + 12x = 13

Combine like terms.

14x + 6 = 13

Subtract 6 from both sides.

14x = 7

Divide 14 on both sides.

x = 7 / 14

x = 0.5

Put this into the second equation in place of x.

4(0.5) - y = -2

2 - y = -2

Subtract 2 from both sides.

-y = -4

Divide both sides by -1.

y = 4

So x = 0.5 and y = 4.

Step-by-step explanation:

8 0
3 years ago
Find m angle 1 and m angle 3 in the kite.
stepladder [879]

Answer:

m∠1=39°, m∠3=51°

Step-by-step explanation:

Angle 3 = 180-(39+90)

180-129=51

Angle 1 = 39 b/c of the corresponding angles.

6 0
3 years ago
Find the product of 2x2 + 3x - 6 and 4x3 - x + 7.​
yanalaym [24]

Answer:

8x^5 + 12x^4 - 26^3 + 11x^2 + 27x - 42

Step-by-step explanation:

(2x^2 + 3x - 6)(4x^3 - x + 7)

8x^5 -2x^3 +14x^2 + 12x^4 - 3x^2 + 21x -24x^3 + 6x - 42

8x^5 + 12x^4 - 26^3 + 11x^2 + 27x - 42

5 0
3 years ago
Other questions:
  • Esmeralda rent a car from a company that race cars by an hour she has a pair nishal fee of $52 and then they charged her $8 per
    13·1 answer
  • EMERGENCY please help thank you !!!!
    8·2 answers
  • In the past you paid $800 per month to rent your apartment. You now pay
    12·1 answer
  • Determine the x-intercept of the graph
    7·1 answer
  • What is the equation for the locus of points 10 units from the origin?
    7·1 answer
  • How many didgidts of pi are there?<br> Write it no copy n pastin
    14·1 answer
  • Find the 20th number in the sequence I started: 5, 7, 15, 17, 25, 27... HELP FAST
    8·1 answer
  • Pls help me with this
    13·1 answer
  • What is another way that you could write the ratio of pennies to quarters?
    8·1 answer
  • Which point represents the approximate location of V300 ?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!