1a. Y = mx + b
Y = 2x + b
-2 = 2(5) + b
-2 = 10 + b, b = 12
Equation: y = 2x + 12
1b. Standard form: Ax + By = C
subtract 12 and y from both sides
2x - y = -12
Equation: 2x - y = -12
Answer:
1 cup of sugar per 2.5 cups of flour.
2.5 cups of flower per 1 cup of sugar.
17.5 cups of flower is used with 7 cups of sugar.
1.6 cups of sugar is used with 6 cups of flour.
Step-by-step explanation:
Answer:
2 - 
Step-by-step explanation:
Using the addition formula for tangent
tan(A - B) =
and the exact values
tan45° = 1 , tan60° =
, then
tan15° = tan(60 - 45)°
tan(60 - 45)°
= 
=
Rationalise the denominator by multiplying numerator/ denominator by the conjugate of the denominator.
The conjugate of 1 +
is 1 -
=
← expand numerator/denominator using FOIL
= 
= 
=
+ 
= 2 - 
Answer:

Step-by-step explanation:
La función es

Diferenciando con respecto a
obtenemos

Igualar con cero

Doble derivada de la función

Entonces, la función es máxima cuando el número de unidades vendidas,
,