Answer:
Step-by-step explanation:
the first one
Answer:
A 2
Step-by-step explanation:
When we divide x by 9 there is some whole number we will call y plus a remainder of 4
x/9 = y remainder 4
Writing this in fraction form
x/9 = y + 4/9
Multiplying each side by 9
9*x/9 = 9* y + 4/9 *9
x = 9y +4
Multiply each side by 2
2x = 2*(9y+4)
2x = 18y +8
Add 3 to each side
2x+3 = 18y +8+3
2x+3 = 18y +11
Divide each side by 9
(2x+3)/9 = 18y/9 +11/9
= 2y + 9/9 +2/9
=(2y+1 + 2/9)
We know y is a whole number and 1 is a whole number so we can ignore 2y +1 when looking for a remainder)
2/9 is a fraction
Taking this back from fraction form to remainder from
(2y+1) remainder 2
Answer:
33% chance
Step-by-step explanation:
there are 12 students total and there are two groups of students, boys and girls, 8 girls 4 boys so we take that and convert it to a fraction which would make 2/3 girls and 1/3 boys, so that would mean that boys have a 33% chance of being selected
Answer:
(i) A truth table shows how the truth or falsity of a compound statement depends on the truth or falsity of the simple statements from which it's constructed.
Since A ∧ B (the symbol ∧ means A and B) is true only when both A and B are true, its negation A NAND B is true as long as one of A or B is false.
Since A ∨ B (the symbol ∨ means A or B) is true when one of A or B is true, its negation A NOR B is only true when both A and B are false.
Below are the truth tables for NAND and NOR connectives.
(ii) To show that (A NAND B)∨(A NOR B) is equivalent to (A NAND B) we build the truth table.
Since the last column (A NAND B)∨(A NOR B) is equal to (A NAND B) it follows that the statements are equivalent.
(iii) To show that (A NAND B)∧(A NOR B) is equivalent to (A NOR B) we build the truth table.
Since the last column (A NAND B)∧(A NOR B) is equal to (A NOR B) it follows that the statements are equivalent.
I see you do K12 huh? XD Okay so, the answer should be below or above or something. lol Hope this helped!
-Twix