Answer:
27
Step-by-step explanation:
The smallest prime number of p for which p^3 + 4p^2 + 4p has exactly 30 positive divisors is 43.
<h3>What is the smallest prime number of p for which p must have exactly 30 positive divisors?</h3>
The smallest number of p in the polynomial equation p^3 + 4p^2 + 4p for which p must have exactly 30 divisors can be determined by factoring the polynomial expression, then equating it to the value of 30.
i.e.
By factorization, we have:
Now, to get exactly 30 divisor.
- (p+2)² requires to give us 15 factors.
Therefore, we can have an equation p + 2 = p₁ × p₂²
where:
- p₁ and p₂ relate to different values of odd prime numbers.
So, for the least values of p + 2, Let us assume that:
p + 2 = 5 × 3²
p + 2 = 5 × 9
p + 2 = 45
p = 45 - 2
p = 43
Therefore, we can conclude that the smallest prime number p such that
p^3 + 4p^2 + 4p has exactly 30 positive divisors is 43.
Learn more about prime numbers here:
brainly.com/question/145452
#SPJ1
Answer:
The probability of randomly selecting a rod that is shorter than 22 cm
P(X<22) = 0.1251
Step-by-step explanation:
<u><em>Step(i):</em></u>-
Given mean of the Population = 25cm
Given standard deviation of the Population = 2.60
Let 'x' be the random variable in normal distribution
Given x=22

<u><em>Step(ii):</em></u>-
The probability of randomly selecting a rod that is shorter than 22 cm
P(X<22) = P( Z<-1.15)
= 1-P(Z>1.15)
= 1-( 0.5+A(1.15)
= 0.5 - A(1.15)
= 0.5 - 0.3749
= 0.1251
The probability of randomly selecting a rod that is shorter than 22 cm
P(X<22) = 0.1251
i am not shure what the answer is to this?
The way to determine bacteriostatic or bacterial is by using a micorscope