a)
his income must be "x" which is the 100%, and we would know that 0.2% of that is 12.37.

b)
his income must be "x" which is the 100%, and we would know that 2% of that is 12.37.

btw he's not making much either way.
well, you already know an absolute value expression has a ± siblings, so let's proceed without much fuss.
![\bf |2x-5|=4\implies \begin{cases} +(2x-5)=4\implies 2x=9\implies x=\cfrac{9}{2}\\[-0.5em] \hrulefill\\ -(2x-5)=4\implies 2x-5=-4\\[1em] 2x=1\implies x=\cfrac{1}{2} \end{cases}](https://tex.z-dn.net/?f=%20%5Cbf%20%7C2x-5%7C%3D4%5Cimplies%20%20%5Cbegin%7Bcases%7D%20%2B%282x-5%29%3D4%5Cimplies%202x%3D9%5Cimplies%20x%3D%5Ccfrac%7B9%7D%7B2%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20-%282x-5%29%3D4%5Cimplies%202x-5%3D-4%5C%5C%5B1em%5D%202x%3D1%5Cimplies%20x%3D%5Ccfrac%7B1%7D%7B2%7D%20%5Cend%7Bcases%7D%20)
9/2 would be converted to 450%
Solving the equation
we get value of p = -4
Step-by-step explanation:
We need to find the value of p in the equation 
Solving to find value of p:

So, solving the equation
we get value of p = -4
Keywords: Solving Equations
Learn more about Solving Equations at:
#learnwithBrainly
We need to find two numbers that multiply to 24 (last coefficient) and add to 10 (middle coefficient). Through trial and error, the two values are 6 and 4
6 + 4 = 10
6*4 = 24
So we can break up the 10ab into 6ab+4ab and then use factor by grouping
a^2 + 10ab + 24b^2
a^2 + 6ab + 4ab + 24b^2
(a^2+6ab) + (4ab+24b^2)
a(a+6b) + 4b(a+6b)
(a+4b)(a+6b)
Therefore, the original expression factors completely to (a+4b)(a+6b)