Answer:
The answer is option (C)=an-1+7
Step-by-step explanation:
A recursive rule is a formula that in which each term is expressed as a function of its preceding term(s), meaning in order to get to the nth term you have to express it in a form of the term that comes before it. In our case the a(n-1) term
So for the sequence -9, -2, 5, 12
The nth term is any number on the sequence and
- -2 is the a(n-1) term for -9
- 5 is the a(n-1) term for -2
- 12 is the a(n-1) term for 5
So we need to find out what we have to do to the preceding term to get the next.
To get -2 from -9 we have to add 7 to -9; -9+7=-2
To get 5 from -2 we have to add 7 to -2; -2+7=5
To get 12 from 5 we add 7 to 5; 7+5=12
So the recursive rule would be= a n-1+7
B - the value of x is positive and the value of y is negative
I plugged it into my calculator and I got 1,870.
We want to find the values of a, b, c, and d such that the given matrix product is equal to a 2x2 identity matrix. We will solve a system of equations to find:
<h3>
Presenting the equation:</h3>
Basically, we want to solve:
![\left[\begin{array}{cc}-1&2\\a&1\end{array}\right]*\left[\begin{array}{cc}b&c\\1&d\end{array}\right] = \left[\begin{array}{cc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-1%262%5C%5Ca%261%5Cend%7Barray%7D%5Cright%5D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Db%26c%5C%5C1%26d%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
The matrix product will be:
![\left[\begin{array}{cc}-b + 2&-c + 2d\\a*b + 1&a*c + d\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-b%20%2B%202%26-c%20%2B%202d%5C%5Ca%2Ab%20%2B%201%26a%2Ac%20%2B%20d%5Cend%7Barray%7D%5Cright%5D)
Then we must have:
-b + 2 = 1
This means that:
b = 2 - 1 = 1
We also need to have:
a*b + 1 = 0
we know the value of b, so we just have:
a*1 + b = 0
Now the two remaining equations are:
-c + 2d = 0
a*c + d = 1
Replacing the value of a we get:
-c + 2d = 0
-c + d = 1
Isolating c in the first equation we get:
c = 2d
Replacing that in the other equation we get:
-(2d) + d = 1
-d = 1
Then:
c = 2d = 2*(-1) = -2
So the values are:
If you want to learn more about systems of equations, you can read:
brainly.com/question/13729904
Answer:
can't understand your question click a clear pic of your question