1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
topjm [15]
2 years ago
8

Please help i dont get this!

Mathematics
1 answer:
creativ13 [48]2 years ago
4 0

Answer:

The other one is -8 this is because the point on the graph is multiplied by 2

Step-by-step explanation:

You might be interested in
How to solve z+2/z-3=5/-3
OLEGan [10]
(z+2)= (z-3)(5/-3)
z+2 = 5z/-3 +5
-3= 2z/-3
9= 2z
9/2 = z
5 0
3 years ago
Write the first 6 answers to the sequence and please explain how you got them
Debora [2.8K]

Answer:

Step-by-step explanation:

a1 = 7

a2 = 4(7) = 28

a3 = 4(28) = 112

a4 = 4(112) = 448

a5 = 4(448) = 1792

a6 = 4(1792) = 7168

4 0
3 years ago
Please help I have searched this question and have not found it. I am bad at math and I'm taking a test and need answers so plea
Vanyuwa [196]

Answer:

C because 18-6=12

Step-by-step explanation:

4 0
2 years ago
Read 2 more answers
Let A be a given matrix below. First, find the eigenvalues and their corresponding eigenspaces for the following matrices. Then,
Rama09 [41]

It looks like given matrices are supposed to be

\begin{array}{ccccccc}\begin{bmatrix}3&2\\2&3\end{bmatrix} & & \begin{bmatrix}1&-1\\2&-1\end{bmatrix} & & \begin{bmatrix}1&2&3\\0&2&3\\0&0&3\end{bmatrix} & & \begin{bmatrix}3&1&1\\1&3&1\\1&1&3\end{bmatrix}\end{array}

You can find the eigenvalues of matrix A by solving for λ in the equation det(A - λI) = 0, where I is the identity matrix. We also have the following facts about eigenvalues:

• tr(A) = trace of A = sum of diagonal entries = sum of eigenvalues

• det(A) = determinant of A = product of eigenvalues

(a) The eigenvalues are λ₁ = 1 and λ₂ = 5, since

\mathrm{tr}\begin{bmatrix}3&2\\2&3\end{bmatrix} = 3 + 3 = 6

\det\begin{bmatrix}3&2\\2&3\end{bmatrix} = 3^2-2^2 = 5

and

λ₁ + λ₂ = 6   ⇒   λ₁ λ₂ = λ₁ (6 - λ₁) = 5

⇒   6 λ₁ - λ₁² = 5

⇒   λ₁² - 6 λ₁ + 5 = 0

⇒   (λ₁ - 5) (λ₁ - 1) = 0

⇒   λ₁ = 5 or λ₁ = 1

To find the corresponding eigenvectors, we solve for the vector v in Av = λv, or equivalently (A - λI) v = 0.

• For λ = 1, we have

\begin{bmatrix}3-1&2\\2&3-1\end{bmatrix}v = \begin{bmatrix}2&2\\2&2\end{bmatrix}v = 0

With v = (v₁, v₂)ᵀ, this equation tells us that

2 v₁ + 2 v₂ = 0

so that if we choose v₁ = -1, then v₂ = 1. So Av = v for the eigenvector v = (-1, 1)ᵀ.

• For λ = 5, we would end up with

\begin{bmatrix}-2&2\\2&-2\end{bmatrix}v = 0

and this tells us

-2 v₁ + 2 v₂ = 0

and it follows that v = (1, 1)ᵀ.

Then the decomposition of A into PDP⁻¹ is obtained with

P = \begin{bmatrix}-1 & 1 \\ 1 & 1\end{bmatrix}

D = \begin{bmatrix}1 & 0 \\ 0 & 5\end{bmatrix}

where the n-th column of P is the eigenvector associated with the eigenvalue in the n-th row/column of D.

(b) Consult part (a) for specific details. You would find that the eigenvalues are i and -i, as in i = √(-1). The corresponding eigenvectors are (1 + i, 2)ᵀ and (1 - i, 2)ᵀ, so that A = PDP⁻¹ if

P = \begin{bmatrix}1+i & 1-i\\2&2\end{bmatrix}

D = \begin{bmatrix}i&0\\0&i\end{bmatrix}

(c) For a 3×3 matrix, I'm not aware of any shortcuts like above, so we proceed as usual:

\det(A-\lambda I) = \det\begin{bmatrix}1-\lambda & 2 & 3 \\ 0 & 2-\lambda & 3 \\ 0 & 0 & 3-\lambda\end{bmatrix} = 0

Since A - λI is upper-triangular, the determinant is exactly the product the entries on the diagonal:

det(A - λI) = (1 - λ) (2 - λ) (3 - λ) = 0

and it follows that the eigenvalues are λ₁ = 1, λ₂ = 2, and λ₃ = 3. Now solve for v = (v₁, v₂, v₃)ᵀ such that (A - λI) v = 0.

• For λ = 1,

\begin{bmatrix}0&2&3\\0&1&3\\0&0&2\end{bmatrix}v = 0

tells us we can freely choose v₁ = 1, while the other components must be v₂ = v₃ = 0. Then v = (1, 0, 0)ᵀ.

• For λ = 2,

\begin{bmatrix}-1&2&3\\0&0&3\\0&0&1\end{bmatrix}v = 0

tells us we need to fix v₃ = 0. Then -v₁ + 2 v₂ = 0, so we can choose, say, v₂ = 1 and v₁ = 2. Then v = (2, 1, 0)ᵀ.

• For λ = 3,

\begin{bmatrix}-2&2&3\\0&-1&3\\0&0&0\end{bmatrix}v = 0

tells us if we choose v₃ = 1, then it follows that v₂ = 3 and v₁ = 9/2. To make things neater, let's scale these components by a factor of 2, so that v = (9, 6, 2)ᵀ.

Then we have A = PDP⁻¹ for

P = \begin{bmatrix}1&2&9\\0&1&6\\0&0&2\end{bmatrix}

D = \begin{bmatrix}1&0&0\\0&2&0\\0&0&3\end{bmatrix}

(d) Consult part (c) for all the details. Or, we can observe that λ₁ = 2 is an eigenvalue, since subtracting 2I from A gives a matrix of only 1s and det(A - 2I) = 0. Then using the eigen-facts,

• tr(A) = 3 + 3 + 3 = 9 = 2 + λ₂ + λ₃   ⇒   λ₂ + λ₃ = 7

• det(A) = 20 = 2 λ₂ λ₃   ⇒   λ₂ λ₃ = 10

and we find λ₂ = 2 and λ₃ = 5.

I'll omit the details for finding the eigenvector associated with λ = 5; I ended up with v = (1, 1, 1)ᵀ.

• For λ = 2,

\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}v = 0

tells us that if we fix v₃ = 0, then v₁ + v₂ = 0, so that we can pick v₁ = 1 and v₂ = -1. So v = (1, -1, 0)ᵀ.

• For the repeated eigenvalue λ = 2, we find the generalized eigenvector such that (A - 2I)² v = 0.

\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}^2 v = \begin{bmatrix}3&3&3\\3&3&3\\3&3&3\end{bmatrix}v = 0

This time we fix v₂ = 0, so that 3 v₁ + 3 v₃ = 0, and we can pick v₁ = 1 and v₃ = -1. So v = (1, 0, -1)ᵀ.

Then A = PDP⁻¹ if

P = \begin{bmatrix}1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{bmatrix}

D = \begin{bmatrix}5&0&0\\0&2&0\\0&2&2\end{bmatrix}

3 0
2 years ago
How many endpoints does a ray have?
Tresset [83]
A Ray has 1 endpoint
7 0
3 years ago
Read 2 more answers
Other questions:
  • Use the photo to answer
    6·1 answer
  • Complete the next step in solving this equation.
    12·1 answer
  • In a sketch, a fountain is drawn 1/4 yard tall. The actual fountain will be 68 times as tall. How tall will the fountain be?
    6·1 answer
  • Marco has $38.43 dollars in his checking account. His checking account is linked to his amazon music account so he can buy music
    13·1 answer
  • Write 9.202 using words
    8·1 answer
  • Answer if u can please will mark brainest show work please
    11·1 answer
  • 22·23 is equal to?? I've been on this question for like 30 minutes lol
    12·1 answer
  • 1.dilate by 3/5 : (20,10)
    13·1 answer
  • 2^2018+2^2019-2^2020/2^2020-2^2021-2^2022​
    7·2 answers
  • Please help me! Giving brainliest!
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!