Answer:If you would like to know what will the approximate population be after 3 years, you can calculate this using the following steps:
an initial population ... 298 quail
an annual rate ... 8%
an exponential function to model the quail population:
f = 298(1+8%)^t = 298(1+8/100)^t
f ... quail population
t ... time (years)
t = 3 years
f = 298(1+8/100)^t = 298(1.08)^3 = 375.4 quail
375.4 quail after 3 years.
1. No, I don’t like cats
2. Yes, I love dogs
The equation for the line parallel to y = −x + 2 going through the point (−3, −5) is y = -x - 8
<h3>Equation of a line</h3>
The equation of a line in point slope form is expressed as:
y - y1 = m(x-x1)
Given the equation y = -x + 2, the slope of the line parallel to the line is -1
Substitute the slope and point (-3, -5)
y -(-5) = -1(x - (-3))
y+5 = -(x + 3)
y+5 =-x - 3
y = -x - 3 - 5
y = -x - 8
Hence the equation for the line parallel to y = −x + 2 going through the point (−3, −5) is y = -x - 8
Learn more on equation of a line here: brainly.com/question/18831322
#SPJ1
Answer:
23x93x66x33ans is 20000this is and of your qustion
If you're using the app, try seeing this answer through your browser: brainly.com/question/2308127_______________
Write the expression below in terms of x and y only:
(I'm going to call it "E")
![\mathsf{E=sin\!\left[sin^{-1}(x)+cos^{-1}(y)\right]\qquad\quad(i)}](https://tex.z-dn.net/?f=%5Cmathsf%7BE%3Dsin%5C%21%5Cleft%5Bsin%5E%7B-1%7D%28x%29%2Bcos%5E%7B-1%7D%28y%29%5Cright%5D%5Cqquad%5Cquad%28i%29%7D)
Let

so the expression becomes

• Finding

![\mathsf{sin\,\alpha=sin\!\left[sin^{-1}(x)\right]}\\\\ \mathsf{sin\,\alpha=x\qquad\quad\checkmark}](https://tex.z-dn.net/?f=%5Cmathsf%7Bsin%5C%2C%5Calpha%3Dsin%5C%21%5Cleft%5Bsin%5E%7B-1%7D%28x%29%5Cright%5D%7D%5C%5C%5C%5C%20%5Cmathsf%7Bsin%5C%2C%5Calpha%3Dx%5Cqquad%5Cquad%5Ccheckmark%7D)
• Finding


because

is positive for
![\mathsf{\alpha\in \left[-\frac{\pi}{2},\,\frac{\pi}{2}\right].}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Calpha%5Cin%20%5Cleft%5B-%5Cfrac%7B%5Cpi%7D%7B2%7D%2C%5C%2C%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cright%5D.%7D)
• Finding

![\mathsf{cos\,\beta=cos\!\left[cos^{-1}(y)\right]}\\\\ \mathsf{cos\,\beta=y\qquad\quad\checkmark}](https://tex.z-dn.net/?f=%5Cmathsf%7Bcos%5C%2C%5Cbeta%3Dcos%5C%21%5Cleft%5Bcos%5E%7B-1%7D%28y%29%5Cright%5D%7D%5C%5C%5C%5C%20%5Cmathsf%7Bcos%5C%2C%5Cbeta%3Dy%5Cqquad%5Cquad%5Ccheckmark%7D)
• Finding


because

is positive for
![\mathsf{\beta\in [0,\,\pi].}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cbeta%5Cin%20%5B0%2C%5C%2C%5Cpi%5D.%7D)
Finally, you get
![\mathsf{E=x\cdot y +\sqrt{1-y^2}\cdot \sqrt{1-x^2}}\\\\\\ \therefore~~\mathsf{sin\!\left[sin^{-1}(x)+cos^{-1}(y)\right]=x\cdot y +\sqrt{1-y^2}\cdot \sqrt{1-x^2}\qquad\quad\checkmark}](https://tex.z-dn.net/?f=%5Cmathsf%7BE%3Dx%5Ccdot%20y%20%2B%5Csqrt%7B1-y%5E2%7D%5Ccdot%20%5Csqrt%7B1-x%5E2%7D%7D%5C%5C%5C%5C%5C%5C%20%5Ctherefore~~%5Cmathsf%7Bsin%5C%21%5Cleft%5Bsin%5E%7B-1%7D%28x%29%2Bcos%5E%7B-1%7D%28y%29%5Cright%5D%3Dx%5Ccdot%20y%20%2B%5Csqrt%7B1-y%5E2%7D%5Ccdot%20%5Csqrt%7B1-x%5E2%7D%5Cqquad%5Cquad%5Ccheckmark%7D)
I hope this helps. =)
Tags: <em>inverse trigonometric trig function sine cosine sin cos arcsin arccos sum angles trigonometry</em>