1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paladinen [302]
3 years ago
9

Show work if possible, thanks!

Mathematics
1 answer:
alexdok [17]3 years ago
8 0
Here is the correct answer

You might be interested in
Please help me with number #3 and check if the others are correct please I really need help
Sveta_85 [38]
All I can say is 1 and 2 are correct.
6 0
3 years ago
PLEASE HELP !!!!!!! Jordan got a new money bank for his birthday with $20 inside. He puts part of his weekly allowance in his ba
kupik [55]

Answer:

Slope of the function is =3.75,Y-intercept =20.

The function is y=3.75(x)+20 with initial value=20,Jordan puts \$3.75 each week andthe amount saved by Jordan after 52 week =215\$.

Step-by-step explanation:

To understand the slope and y-intercept lets assign x as number of weeks and  y as the money saved by Jordan.

Jordan is already having a sum of \$20 inside the money bank so in 0 week the amount is \$20 can be written as (x,y) =(0,20) in coordinate form.

SImilarly

We have (x,y) =(0,20)and (x_1,y_1) =(25,113.75)

Part A:

The function is y=m(x)+b

From point-slope form,we have slope (m)

and m=\frac{y_1-y}{x_1-x},plugging the values of the points.

m=\frac{113.75-20}{25-0}=3.75

Y-intercept of this function is the constant term or the money of  \$20 that is already inside the money bank.

We can also calculate y-intercept by arranging the function as b=y-m(x) choosing any (x_1,y_1) = (25,113.75) coordinate and here b is the y-intercept.

The result will be same.

Part B:

The equation <u>y=3.75(x)</u> can represent the function described.

And the initial value is the <u>y-intercept =\$20</u>

Jordan puts<u> 3.75 </u>in his bank each week.

After 52 week the amount saved by Jordan ,here x=52,as the x-variable is the number of weeks.

Plugging the value of x=52 in  y=m(x)+b where m=3.75 so the equation becomes  y=3.75(x)+20

y=3.75(x)+20 =3.75(52)+20=\$215

So basically the function is y=3.75(x)+20 and the amount saved by Jordan after 52 week =215\$.

6 0
3 years ago
O GRAPHS, FUNCTIONS, AND SEQUENCES
WINSTONCH [101]
Always use the formula (y2-y1)/(x2-x1) to find a line’s slope, given two points:

(-1- -8)/(4-5) = 7/-1 = -7

-7 is the slope
7 0
2 years ago
You have 12 coins, one of which is fake. The fake coin is indistinguishable from the rest except that it is heavier. Can you det
Anton [14]
Yep! 
Weighing #1: Start off by splitting the pile of 12 coins evenly into two piles, 6 in each pile. Put one pile on each side of the balance. The side that is weighed down has the fake coin it in. Ignore the other 6 coins.

Weighing #2: Now you have 6 coins left. Split the pile evenly again, 3 in each pile. Repeat the same process and put each pile on one side of the balance. The side that is weighed down has your fake coin in it. Ignore the other 3 coins.

Weighing #3: You have 3 coins left. Take two coins, whichever two you like, and weigh them. If they weigh the same, then the one you didn't weigh is the fake one. If one is heavier, then that heavier one is your fake coin.
5 0
3 years ago
Read 2 more answers
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
2 years ago
Other questions:
  • There were 11 friends playing a video game online when 5 friends quit.If each player left had 5 lives,how many lives did they ha
    6·2 answers
  • WILL GIVE BRAINLIEST IF YOU ANSWER
    6·2 answers
  • Need help on IXL SOS
    5·2 answers
  • Which of the following items would be considered an asset? Select all that apply.
    7·2 answers
  • Consider the data set on the number line. Determine the mean absolute deviation. Round to the nearest tenth. A) 5.2 B) 6.3 C) 12
    15·1 answer
  • Jenna jump 156 inches in the long jump competition After High School track meet how many feet did Jenna jump
    12·2 answers
  • What is 0.25(2d+1)... I need help...
    10·1 answer
  • The local bike shop charges a rental fee of 12$ as was as 4$ per hour to rent a bike if I spent 44$ write an equation to model t
    14·1 answer
  • Use a coterminal angle to find the exact value of the expression. Do not use a calculator.
    12·1 answer
  • What is the volume of the cone shown in the picture?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!