Answer:// Solve equation [1] for the variable y
[1] y = 2x - 3
// Plug this in for variable y in equation [2]
[2] -2•(2x-3) + 2x = 2
[2] - 2x = -4
// Solve equation [2] for the variable x
[2] 2x = 4
[2] x = 2
// By now we know this much :// Solve equation [1] for the variable y
[1] y = 2x - 3
// Plug this in for variable y in equation [2]
[2] -2•(2x-3) + 2x = 2
[2] - 2x = -4
// Solve equation [2] for the variable x
[2] 2x = 4
[2] x = 2
// By now we know this much :
y = 2x-3
x = 2
// Use the x value to solve for y
y = 2(2)-3 = 1
y = 2x-3
x = 2
// Use the x value to solve for y
y = 2(2)-3 = 1
Step-by-step explanation:
The first step for solving this is to move the variable to the left side and then change its sign.
10 - 11d + 5d > - 4
Now move the constant to the right side and change its sign.
-11d + 5d > -4 - 10
Collect the terms with a
d variable.
-6d > -4 - 10
Calculate the difference on the right side.
-6d > -14
Lastly,, divide both sides of the inequality by -6 and flip the inequality sign to find your final answer.
d <

Let me know if you have any further questions.
:)
Answer:
943,281
Step-by-step explanation:
Just move the 3 up a value
If it's in the ten's place, then move it to the hundred's place value.
If it's in the hundred's place, then move it to thousand's place value.
So on and so on...
<u>Step-by-step explanation:</u>
transform the parent graph of f(x) = ln x into f(x) = - ln (x - 4) by shifting the parent graph 4 units to the right and reflecting over the x-axis
(???, 0): 0 = - ln (x - 4)

0 = ln (x - 4)

1 = x - 4
<u> +4 </u> <u> +4 </u>
5 = x
(5, 0)
(???, 1): 1 = - ln (x - 4)

1 = ln (x - 4)

e = x - 4
<u> +4 </u> <u> +4 </u>
e + 4 = x
6.72 = x
(6.72, 1)
Domain: x - 4 > 0
<u> +4 </u> <u>+4 </u>
x > 4
(4, ∞)
Vertical asymptotes: there are no vertical asymptotes for the parent function and the transformation did not alter that
No vertical asymptotes
*************************************************************************
transform the parent graph of f(x) = 3ˣ into f(x) = - 3ˣ⁺⁵ by shifting the parent graph 5 units to the left and reflecting over the x-axis
Domain: there is no restriction on x so domain is all real number
(-∞, ∞)
Range: there is a horizontal asymptote for the parent graph of y = 0 with range of y > 0. the transformation is a reflection over the x-axis so the horizontal asymptote is the same (y = 0) but the range changed to y < 0.
(-∞, 0)
Y-intercept is when x = 0:
f(x) = - 3ˣ⁺⁵
= - 3⁰⁺⁵
= - 3⁵
= -243
Horizontal Asymptote: y = 0 <em>(explanation above)</em>
Answer:
1.C
2.A
Step-by-step explanation: