The solution to the system of linear equations is where the two lines intersect.
Look for the point where the two lines intersect. The x-value is 2 1/2, and the y-value is -4.
The answer is C.
Answer:
f(x) is x multipled by f
Step-by-step explanation:
pls brianlist
Answer:
22. C to D
23. Sam's height
Step-by-step explanation:
Acronym: King Henry Died Unusually Drinking Chocolate Milk
i e e n e e i
l c c i c n l
o t a t i t l
o i i
22. 4 km < 4.15 km
23. 1.16 m > 0.98 m
Problem 1
<h3>Answer: B. M<3 would need to double.</h3>
Explanation: This is because angles 3 and 6 are congruent corresponding angles. Corresponding angles are congruent whenever we have parallel lines like this. If they weren't congruent, then the lines wouldn't be parallel. We would need to double angle 3 to keep up with angle 6.
=====================================================
Problem 2
<h3>Answer: D. none of these sides are parallel</h3>
Explanation: We have angles A and C that are same side interior angles, but they add to A+C = 72+72 = 144, which is not 180. The same side interior angles must add to 180 degrees for parallel lines to form. This shows AB is not parallel to CD.
A similar situation happens with angles B and D, since B+D = 108+108 = 216. This also shows AB is not parallel to CD. We can rule out choices A and C.
Choice B is false because AD is a diagonal along with BC. The diagonals of any quadrilateral are never parallel as they intersect inside the quadrilateral. Parallel lines never intersect.
The only thing left is choice D. We would say that AC || BD, since A+B = 72+108 = 180 and C+D = 72+108 = 180, but this isn't listed as an answer choice.
Answer:
Option D. It's a perfect square trinomial.
Step-by-step explanation:
(a) 36x² - 4x + 16
= (6x)² - 2(2x) + (4)²
It's not a perfect square trinomial
(b) 16x² - 8x + 36
= (4x)² - 2x(4x) + (6)²
It's not a perfect square trinomial
(c) 25x² + 9x + 4
= (5x)² + 2
+ (2)²
It's not a perfect square trinomial
(d) 4x² + 20x + 25
= (2x)² + 2(10x) + (5)²
= (2x+5)²
It's a perfect square trinomial.