<span>Answer:
Its too long to write here, so I will just state what I did.
I let P=(2ap,ap^2) and Q=(2aq,aq^2)
But x-coordinates of P and Q differ by (2a)
So P=(2ap,ap^2) BUT Q=(2ap - 2a, aq^2)
So Q=(2a(p-1), aq^2)
which means, 2aq = 2a(p-1)
therefore, q=p-1
then I subbed that value of q in aq^2
so Q=(2a(p-1), a(p-1)^2)
and P=(2ap,ap^2)
Using these two values, I found the midpoint which was:
M=( a(2p-1), [a(2p^2 - 2p + 1)]/2 )
then x = a(2p-1)
rearranging to make p the subject
p= (x+a)/2a</span>
Step-by-step explanation:
this is the answer of the required questions
thank you
You should write numbers in as many ways as you possibly can to make new connections in your brain. Knowing how to write numbers in many different ways can help you solve complex problems more easily. Doing this can also reinforce the mathematical principles and logic you have memorised.
Writing one in many different ways:
1=1/1=2/2=3/3=4/4=(-1)/(-1)=(-2)/(-2)
=1.0=1.00=1.000=(1/2)+(1/2)=(1/3)+(1/3)+(1/3)
=(1/4)+(1/4)+(1/4)+(1/4)
Writing a half in many different ways:
1/2=(1/4)+(1/4)=(1/6)+(1/6)+(1/6)
=(1/8)+(1/8)+(1/8)+(1/8)=4*(1/8)
=2/4=3/6=4/8=5/10=0.5=0.50
etc...etc...
Answer:
Angle 1 = 108°
Angle 2 = 72°
Angle 3 = 120°
Angle 4 = 96°
Angle 5 = 144°
Step-by-step explanation:
We need to find the measures of the interior angles in a pentagon if the measure of each consecutive angle is in the ratio 9:6:10:8:12.
Let x be the common ratio
So, we can write:
Angle 1 = 9x
Angle 2 = 6x
Angle 3 = 10x
Angle 4 = 8x
Angle 5 = 12x
We know that the <em>sum of all angles of pentagon = 540</em>
So, adding all angles and equal them to 540, we can find value of x

So, we get the value of x: x=12
Now, calculating the angles by putting x=12:
Angle 1 = 9x = 9(12) = 108°
Angle 2 = 6x = 6(12) = 72°
Angle 3 = 10x = 10(12) = 120°
Angle 4 = 8x = 8(12) = 96°
Angle 5 = 12x= 12(12) = 144°