Check the picture below.
so then, the perimeter of that hexagon will just be the sum of all its 6 sides, or namely 3⅖ + 3⅖ + 3⅖ + 3⅖ + 3⅖ + 3⅖, or just 6( 3⅖ ).
![\bf \textit{area of a regular polygon}\\\\ A=\cfrac{1}{2}ap~~ \begin{cases} a=apothem\\ p=perimeter\\[-0.5em] \hrulefill\\ a=3\\ p=6\left(3\frac{2}{5} \right) \end{cases}\implies A=\cfrac{1}{2}(3)\left[ 6\left(3\frac{2}{5} \right) \right]\implies A=\cfrac{1}{2}(3)\left[ 6\left(\cfrac{17}{5} \right) \right] \\\\\\ A=\cfrac{1}{2}(3)\left(\cfrac{102}{5} \right)\implies A=\cfrac{1}{2}\left( \cfrac{306}{5} \right)\implies A=\cfrac{153}{5}\implies A=30\frac{3}{5}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20regular%20polygon%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B2%7Dap~~%20%5Cbegin%7Bcases%7D%20a%3Dapothem%5C%5C%20p%3Dperimeter%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D3%5C%5C%20p%3D6%5Cleft%283%5Cfrac%7B2%7D%7B5%7D%20%5Cright%29%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%283%29%5Cleft%5B%206%5Cleft%283%5Cfrac%7B2%7D%7B5%7D%20%5Cright%29%20%5Cright%5D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%283%29%5Cleft%5B%206%5Cleft%28%5Ccfrac%7B17%7D%7B5%7D%20%5Cright%29%20%5Cright%5D%20%5C%5C%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B2%7D%283%29%5Cleft%28%5Ccfrac%7B102%7D%7B5%7D%20%5Cright%29%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%5Cleft%28%20%5Ccfrac%7B306%7D%7B5%7D%20%5Cright%29%5Cimplies%20A%3D%5Ccfrac%7B153%7D%7B5%7D%5Cimplies%20A%3D30%5Cfrac%7B3%7D%7B5%7D)
Answer:




Step-by-step explanation:
Function composition and transformation combines functions together using operations such as addition, subtraction, multiplication, division and substitution. To find each, perform the operation with the functions f(x) = 2x+1 and
.
(f+g)(x) is the functions f and g added together with 2 substituted for x.

(f·g)(x) is function composition that means f(g(x)) or substitute g(x) into f(x).

f(x) / g(x) is division of the two functions. Division can only occur with polynomials if they share the same factors or things which multiply to create them. If none are present, do not simplify.

This cannot be simplified.
f(2) + g(-2) means find the function value of f at 2 and the function value of g at -2 then add them together.

I can’t read the question, what is the question?
Answer:
tasha got 1/2 of it
one friend got 1/4 of it
the other friend got 1/4 of it
Step-by-step explanation:
Answer:
Can you show the full problem so that I can help