<span>30 hours
For this problem, going to assume that the actual flow rate for both pipes is constant for the entire duration of either filling or emptying the pool. The pipe to fill the pool I'll consider to have a value of 1/12 while the drain that empties the pool will have a value of 1/20. With those values, the equation that expresses how many hour it will take to fill the pool while the drain is open becomes:
X(1/12 - 1/20) = 1
Now solve for X
X(5/60 - 3/60) = 1
X(2/60) = 1
X(1/30) = 1
X/30 = 1
X = 30
To check the answer, let's see how much water would have been added over 30 hours.
30/12 = 2.5
So 2 and a half pools worth of water would have been added. Now how much would be removed?
30/20 = 1.5
And 1 and half pools worth would have been removed. So the amount left in the pool is
2.5 - 1.5 = 1
And that's exactly the amount needed.</span>
Answer:
g(0) = -2
Step-by-step explanation:
Given - g(x) = -x - 2
To find - g(0)
Proof -
We have given the function ,
g(x) = -x - 2
For finding the value of g(0), we just have to put x = 0 in g(x),
We get
g(0) = -0 - 2 = -2
⇒g(0) = -2
2, 6, 18, 54, 162, 486...
Start with the number 2.

And continue with that pattern from there.
Answer: 31
Step-by-step explanation:
6+(2+3)² = 31
(No Step-By-Step Included)
The distance between point on the ground from the top of the building is 396 meter, if the building is 280 m high and The angle of depression from the top of a building to a point on the ground is 45 degrees.
Step-by-step explanation:
The given is,
The angle of depression from the top of a building to a point on the ground is 45 degrees.
Height of the building is 280 meter.
Step: 1
Given diagram is a right angled diagram,
For right angle triangle,
90° = 45° + 45°
= 90°
Trignometric ratio,
sin ∅ =
....................(1)
For the above ratio take the bottom angle, that is angle of depression from the top of a building to a point on the ground is 45 degrees.
Where, Opp side = 280 meters
Hyp side = x
∅ = 45°
Equation (1) becomes,
sin 45° = 
0.70710678 = 
x = 
x = 395.979
Distance between point on the ground from the top of the building, x ≅ 396 meter
Trignometric ratio,
cos ∅ =
Cos 45 =
Adj = (0.70710678)(396)
Bottom length, Adj = 280 meter
Result:
The distance between point on the ground from the top of the building is 396 meter.