Y=-2/3x-5
i think is the answer
First of all we will understand the question!!
<em>The</em><em> </em><em>question</em><em> </em><em>is</em><em> </em><em>saying</em><em> </em><em>that</em><em> </em><em>you</em><em> </em><em>are</em><em> </em><em>given</em><em> </em><em>a</em><em> </em><em>function</em><em> </em><em>and</em><em> </em><em>you</em><em> </em><em>have</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>x</em><em> </em><em>which</em><em> </em><em>will</em><em> </em><em>give</em><em> </em><em>the</em><em> </em><em>maximum</em><em> </em><em>profit</em><em>.</em><em>.</em><em>.</em><em> </em><em>Lets</em><em> </em><em>solve</em><em> </em><em>it</em><em> </em><em>by</em><em> </em><em>finding</em><em> </em><em>the</em><em> </em><em>extrema</em><em> </em><em>using</em><em> </em><em>the</em><em> </em><em>vertex</em>
<em>
</em>
- <u>Identify the coefficients a and b of the quadratic function</u>
<em>
</em>
- <u>Since a<0, the function has the maximum value at x, calculated by substituting a and b into x=-b/2a</u>
<u>
</u>
- <u>Solve</u><u> </u><u>the</u><u> </u><u>equation</u><u> </u><u>for</u><u> </u><u>x</u><u> </u>
<u>
</u>
- <u>The maximum of the quadratic function is at </u><u>x</u><u>=</u><u>3</u>
Answer:
4b+17
Step-by-step explanation:
3(b+5)+b+2=
3b+15+b+2=
4b+17
Answer:
a. 0.689
b. 0.8
c. 0.427
Step-by-step explanation:
The given scenario indicates hyper-geometric experiment because because successive trials are dependent and probability of success changes on each trial.
The probability mass function for hyper-geometric distribution is
P(X=x)=kCx(N-k)C(n-x)/NCn
where N=4+3+3=10
n=2
k=4
a.
P(X>0)=1-P(X=0)
The probability mass function for hyper-geometric distribution is
P(X=x)=kCx(N-k)C(n-x)/NCn
P(X=0)=4C0(6C2)/10C2=15/45=0.311
P(X>0)=1-P(X=0)=1-0.311=0.689
P(X>0)=0.689
b.
The mean of hyper-geometric distribution is
μx=nk/N
μx=2*4/10=8/10=0.8
c.
The variance of hyper-geometric distribution is
σx²=nk(N-k).(N-n)/N²(N-1)
σx²=2*4(10-4).(10-2)/10²*9
σx²=8*6*8/900=384/900=0.427