Answer:

Step-by-step explanation:
We want to find the distance between two points, so the following formula is used.

Where (x₁, y₁) and (x₂, y₂) are the points we are finding the distance between.
We are given the points (-2, -1) and (3,2). If we match the corresponding value and variable we see that:
Substitute the values into the formula.

Solve the parentheses.
- -2 -3 = -5
- 2--1 = 2+ 1 = 3

Solve the exponents.
- (-5)²= -5*-5= 25
- (3)²= 3*3=9

Add.

This radical cannot be simplified, so the distance between the two points is <u>√34</u> and <u>choice 3 </u> is correct.
Answer:
c and d
Step-by-step explanation:
ok so i do not know how to explain
__________________________
Measurement of "AC" :
(x + 5) + (2x <span>− 11) ;
________________________
Find the measurement of "AB" [which is: "(x+5)" ]:
______________________________________________
First, simplify to find the measurement of "AC" :
________________________________________
</span>(x + 5) + (2x − 11) ;
= (x + 5) + 1(2x − 11) ;
= x + 5 + 2x − 11 ;
→ Combine the "like terms" ;
x + 2x = 3x ;
5 − 11 = - 6 ;
______________
to get: 3x − 6 ;
_______________
So, (x + 5) + (2x − 11) = 3x − 6 ;
_______________________________
Solve for: "(x + 5)"
_______________________________
We have:
_______________________________
(x + 5) + (2x − 11) = 3x − 6 ;
Subtract: "(2x − 11)" ; from EACH SIDE of the equation ;
to isolate "(x + 5)" on one side of the equation;
and to solve for "(x + 5)" ;
________________________________________________________
→ (x + 5) + (2x − 11) − (2x − 11) = (3x − 6) − (2x − 11) ;
→ (x + 5) = (3x − 6) − (2x − 11) ;
_________________________________________________
Note: Simplify: "(3x − 6) − (2x − 11)" ;
→ (3x − 6) − (2x − 11) ;
= (3x − 6) − 1(2x − 11) ;
= 3x − 6 − 2x + 11 ;
__________________________
→ Combine the "like terms" :
_____________________________
+3x − 2x = 1x = x ;
-6 + 11 = 5 ;
_____________________________
To get: x + 5 ;
So we have:
______________________________
x + 5 = x + 5 ;
______________________________
So, x = all real numbers.
x = <span>ℝ </span>
Answer:

Step-by-step explanation:
Out of the given options,
is the only fraction that is improper. All other options are not improper. Therefore,
would not belong is the given group of fractions.
Hope this helps.
To evaluate an algebraic expression means to find the value of the expression when the variable is replaced by a given number. To evaluate an expression, we substitute the given number for the variable in the expression and then simplify the expression using the order of operations.