The range of frequency is from 0.05 to 0.35 and a couple f the numbers aren't close to the other numbers 0.05 is not close to 0.21 or 0.35
so the outcomes do not appear to be equally likely, because of that a uniform probability model wouldn't be a good model.
The answer is A
<span />
Answer:
x = 14/3 + sqrt(217)/3 or x = 14/3 - sqrt(217)/3
Step-by-step explanation:
Solve for x:
x + 4 + 1/x = (10 x)/7
Bring x + 4 + 1/x together using the common denominator x:
(x^2 + 4 x + 1)/x = (10 x)/7
Cross multiply:
7 (x^2 + 4 x + 1) = 10 x^2
Expand out terms of the left hand side:
7 x^2 + 28 x + 7 = 10 x^2
Subtract 10 x^2 from both sides:
-3 x^2 + 28 x + 7 = 0
Divide both sides by -3:
x^2 - (28 x)/3 - 7/3 = 0
Add 7/3 to both sides:
x^2 - (28 x)/3 = 7/3
Add 196/9 to both sides:
x^2 - (28 x)/3 + 196/9 = 217/9
Write the left hand side as a square:
(x - 14/3)^2 = 217/9
Take the square root of both sides:
x - 14/3 = sqrt(217)/3 or x - 14/3 = -sqrt(217)/3
Add 14/3 to both sides:
x = 14/3 + sqrt(217)/3 or x - 14/3 = -sqrt(217)/3
Add 14/3 to both sides:
Answer: x = 14/3 + sqrt(217)/3 or x = 14/3 - sqrt(217)/3

- Given - <u>two </u><u>points </u><u>P </u><u>(</u><u> </u><u>5</u><u> </u><u>,</u><u> </u><u>1</u><u>0</u><u> </u><u>)</u><u> </u><u>and </u><u>R </u><u>(</u><u> </u><u>1</u><u>2</u><u> </u><u>,</u><u> </u><u>1</u><u>4</u><u> </u><u>)</u><u> </u><u>on </u><u>the </u><u>c</u><u>artesian </u><u>plane</u>
- To find - <u>distance </u><u>between </u><u>the </u><u>two </u><u>points</u>
<u>Using </u><u>the </u><u>distance </u><u>formula</u> ~

we have ,

<u>substituting</u><u> </u><u>the </u><u>values </u><u>in </u><u>the </u><u>formula </u><u>,</u><u> </u><u>we </u><u>get</u>

hope helpful :)
Answer:
y=3x+2
Step-by-step explanation:
slope intercept form
y=mx+b
y=y coordinate
m=slope
x=x coordinate
b= y-intercept