1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mrs_skeptik [129]
3 years ago
7

What is the coefficient of the variable in the expression 2 − 5x − 4 + 8? A: −5 B:−4 C:2 D:8

Mathematics
2 answers:
vitfil [10]3 years ago
4 0
2-5x-4+8

 A:  -5

===============================
gogolik [260]3 years ago
3 0
First of all, coefficent means the number standing in front of a variable.
So, according to the expression, 2 - 5x - 4 + 8, the coefficient is -5.
Why? because it stands in front of the variable.
You might be interested in
Bo is trying to find the height of a radio antenna on the roof of a local building. He stands at a horizontal distance of 20 met
Romashka-Z-Leto [24]

Answer:

12.5

Step-by-step explanation:

see attached image

8 0
2 years ago
What is a quadrilateral with opposite sides that are parallel,4 sides that are the same length,and no right angles?
STALIN [3.7K]
The shape you describe is a rhombus. 
7 0
3 years ago
DNA molecules consist of chemically linked sequences of the bases adenine, guanine, cytosine and thymine, denoted A, G, C and T.
Dmitry [639]

Answer:

1. See the attached tree diagram (64 different sequences); 2. 64 codons; 3. 8 codons; 4. 24 codons consist of three different bases.

Step-by-step explanation:

The main thing to solve this kind of problem, it is to know if the pool of elements admits <em>repetition</em> and if the <em>order matters</em> in the sequences or collections of objects that we can form.

In this problem, we have the bases of the DNA molecule, namely, adenine (A), thymine (T), guanine (G) and cytosine (C) and they may appear in a sequence of three bases (codon) more than once. In other words, <em>repetition is allowed</em>.

We can also notice that <em>order matters</em> in this problem since the position of the base in the sequence makes a difference in it, i.e. a codon (ATA) is different from codon (TAA) or (AAT).

Then, we are in front of sequences that admit repetitions and the order they may appear makes a difference on them, and the formula for this is as follows:

\\ Sequences\;with\;repetition = n^{k} (1)

They are sequences of <em>k</em> objects from a pool of <em>n</em> objects where the order they may appear matters and can appeared more than once (repetition allowed).

<h3>1 and 2. Possible base sequences using tree diagram and number of possible codons</h3>

Having all the previous information, we can solve this question as follows:

All possible base sequences are represented in the first graph below (left graph) and are 64 since <em>n</em> = 4 and <em>k</em> = 3.

\\ Sequences\;with\;repetition = 4^{3} = 4*4*4 = 64

Looking at the graph there are 4 bases * 4 bases * 4 bases and they form 64 possible sequences of three bases or codons. So <em>there are 64 different codons</em>. Graphically, AAA is the first case, then AAT, the second case, and so on until complete all possible sequences. The second graph shows another method using a kind of matrices with the same results.

<h3>3. Cases for codons whose first and third bases are purines and whose second base is a pyrimidine</h3>

In this case, we also have sequences with <em>repetitions</em> and the <em>order matters</em>.

So we can use the same formula (1) as before, taking into account that we need to form sequences of one object for each place (we admit only a Purine) from a pool of two objects (we have two Purines: A and G) for the <em>first place</em> of the codon. The <em>third place</em> of the codon follows the same rules to be formed.

For the <em>second place</em> of the codon, we have a similar case: we have two Pyrimidines (C and T) and we need to form sequences of one object for this second place in the codon.

Thus, mathematically:

\\ Sequences\;purine\;pyrimidine\;purine = n^{k}*n^{k}*n^{k} = 2^{1}*2^{1}*2^{1} = 8

All these sequences can be seen in the first graph (left graph) representing dots. They are:

\\ \{ATA, ATG, ACA, ACG, GTA, GTG, GCA, GCG\}

The second graph also shows these sequences (right graph).

<h3>4. Possible codons that consist of three different bases</h3>

In this case, we have different conditions: still, order matters but no repetition is allowed since the codons must consist of three different bases.

This is a case of <em>permutation</em>, and the formula for this is as follows:

\\ nP_{k} = \frac{n!}{n-k}! (2)

Where n! is the symbol for factorial of number <em>n</em>.

In words, we need to form different sequences (order matters with no repetition) of three objects (a codon) (k = 3) from a pool of four objects (n = 4) (four bases: A, T, G, and C).

Then, the possible number of codons that consist of three different bases--using formula (2)--is:

\\ 4P_{3} = \frac{4!}{4-3}! = \frac{4!}{1!} = \frac{4!}{1} = 4! = 4*3*2*1 = 24

Thus, there are <em>24 possible cases for codons that consist of three different bases</em> and are graphically displayed in both graphs (as an asterisk symbol for left graph and closed in circles in right graph).

These sequences are:

{ATG, ATC, AGT, AGC, ACT, ACG, TAG, TAC, TGA, TGC, TCA, TCG, GAT, GAC, GTA, GTC, GCA, GCT, CAT, CAG, CTA, CTG, CGA, CGT}

<h3 />

6 0
3 years ago
BRAINLIEST WILL BE MARKED
zubka84 [21]

Answer:

B. input

Step-by-step explanation:

8 0
3 years ago
Multiply polynomials
Burka [1]

<em>Answer</em><em> </em>-2x^4 - 2x^3 + 22x^2 - 30x + 12

<em>Here's</em><em> your</em><em> </em><em>solution</em>

=> <em>(</em><em>2</em><em>x</em><em>^</em><em>2</em><em> </em><em>-</em><em> </em><em>4</em><em>x</em><em> </em><em>+</em><em> </em><em>2</em><em>)</em><em> </em><em>-</em><em> </em><em>(</em><em>x^</em><em>2</em><em> </em><em>+</em><em> </em><em>3</em><em>x</em><em> </em><em>-</em><em> </em><em>6</em><em>)</em>

<em> </em><em>=</em><em>></em><em> </em><em>(</em><em>2</em><em>x</em><em>^</em><em>2</em><em> </em><em>-</em><em> </em><em>4</em><em>x</em><em> </em><em>+</em><em> </em><em>2</em><em>)</em><em> </em><em>-x^</em><em>2</em><em> </em><em>-</em><em> </em><em>3</em><em>x</em><em> </em><em>+</em><em> </em><em>6</em>

<em> </em><em>=</em><em>></em><em> </em><em>firstly</em><em> </em><em>multiple</em><em> </em><em>whole</em><em> </em><em>with </em><em>-x^</em><em>2</em><em> </em>

<em>=</em><em>></em><em> </em><em>-x^</em><em>2</em><em>(</em><em>2</em><em>x</em><em>^</em><em>2</em><em> </em><em>-</em><em> </em><em>4</em><em>x</em><em> </em><em>+</em><em> </em><em>2</em><em>)</em><em> </em><em>=</em><em> </em><em>-2x^</em><em>4</em><em> </em><em>+</em><em> </em><em>4</em><em>x</em><em>^</em><em>3</em><em> </em><em>-</em><em> </em><em>2</em><em>x</em><em>^</em><em>2</em><em> </em>

<em>=</em><em>></em><em> </em><em>now </em><em>with</em><em> </em><em>-3x </em>

<em> </em><em>=</em><em>></em><em> </em><em>-3x(</em><em>2</em><em>x</em><em>^</em><em>2</em><em> </em><em>-</em><em> </em><em>4</em><em>x</em><em> </em><em>+</em><em> </em><em>2</em><em>)</em><em> </em><em>=</em><em> </em><em>-6x^</em><em>3</em><em> </em><em>+</em><em>1</em><em>2</em><em>x</em><em>^</em><em>2</em><em> </em><em>-6x </em>

<em>=</em><em>></em><em> </em><em>with</em><em> </em><em>6</em>

<em>=</em><em>></em><em> </em><em>6</em><em>(</em><em>2</em><em>x</em><em>^</em><em>2</em><em> </em><em>-</em><em> </em><em>4</em><em>x</em><em> </em><em>+</em><em> </em><em>2</em><em>)</em><em> </em><em>=</em><em> </em><em>1</em><em>2</em><em>x</em><em>^</em><em>2</em><em> </em><em>-</em><em> </em><em>2</em><em>4</em><em>x</em><em> </em><em>+</em><em> </em><em>1</em><em>2</em>

<em> </em><em>=</em><em>></em><em> </em><em>now </em><em>add </em><em>all </em><em>terms</em><em> </em>

<em>=</em><em>></em><em> </em><em>-2x^</em><em>4</em><em> </em><em>-</em><em> </em><em>2</em><em>x</em><em>^</em><em>3</em><em> </em><em>+</em><em> </em><em>2</em><em>2</em><em>x</em><em>^</em><em>2</em><em> </em><em>-</em><em> </em><em>3</em><em>0</em><em>x</em><em> </em><em>+</em><em> </em><em>1</em><em>2</em>

<em>hope</em><em> it</em><em> helps</em><em> and</em><em> your</em><em> day</em><em> will</em><em> be</em><em> full</em><em> of</em><em> happiness</em><em> </em>^_^

4 0
2 years ago
Other questions:
  • The line plots shows the number of hours two different age groups of teenagers spent online the previous week.
    10·2 answers
  • A stadium has 55,000 seats. Seats sell for $42 in Section A, $24 in Section B, and $18 in Section C. The number of seats in Sect
    15·2 answers
  • Describe the congruence transformation that maps quadrilateral ABCD to quadrilateral A'B'C'D'.
    9·1 answer
  • ABC is similar to DEF. Find the length of
    8·1 answer
  • A disc is thrown into the air with an upward velocity of 20 ft/sec. Its height h in feet after t seconds is given by the functio
    7·1 answer
  • Which of the following is the function representing the graph below?
    13·1 answer
  • If a point is reflected over the x-axis, the x-coordinate will not change. True False
    14·2 answers
  • Will mark Brianliest please answer :)
    6·1 answer
  • 4. (05.02)
    13·1 answer
  • If /\PQR~/\SQT, find the value of x.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!