1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allsm [11]
3 years ago
7

Find the exact value of cos (-270).

Mathematics
1 answer:
djyliett [7]3 years ago
8 0

Answer:

Step-by-step explanation:

Assuming this is in degrees, it is actually 0.

You might be interested in
What is the median of this data set? 100,102,103,106,109
liq [111]

The answer is 103 because it’s in the “middle”

3 0
3 years ago
Read 2 more answers
What is the volume of a rectangular prism with a length of 4 yards, width of 3 yards and height of 6 yards?
Lunna [17]
Volume= Length*Width*Height
V=(4)(3)(6)
V=72 yards cubed
The answer is A.
4 0
3 years ago
Better Products, Inc., manufactures three products on two machines. In a typical week, 40 hours are available on each machine. T
Kaylis [27]

Answer:

z (max)  =  1250 $

x₁  = 25    x₂  =  0   x₃  =  25

Step-by-step explanation:

                                Profit $    mach. 1      mach. 2

Product 1     ( x₁ )       30             0.5              1

Product 2    ( x₂ )       50             2                  1

Product 3    ( x₃ )       20             0.75             0.5

Machinne 1 require  2 operators

Machine   2 require  1  operator

Amaximum of  100 hours of labor available

Then Objective Function:

z  =  30*x₁  +  50*x₂  +  20*x₃      to maximize

Constraints:

1.-Machine 1 hours available  40

In machine 1    L-H  we will need

0.5*x₁  +  2*x₂  + 0.75*x₃  ≤  40

2.-Machine 2   hours available  40

1*x₁  +  1*x₂   + 0.5*x₃   ≤  40

3.-Labor-hours available   100

Machine 1     2*( 0.5*x₁ +  2*x₂  +  0.75*x₃ )

Machine  2       x₁   +   x₂   +  0.5*x₃  

Total labor-hours   :  

2*x₁  +  5*x₂  +  2*x₃  ≤  100

4.- Production requirement:

x₁  ≤  0.5 *( x₁ +  x₂  +  x₃ )     or   0.5*x₁  -  0.5*x₂  -  0.5*x₃  ≤ 0

5.-Production requirement:

x₃  ≥  0,2 * ( x₁  +  x₂   +  x₃ )  or    -0.2*x₁  - 0.2*x₂ + 0.8*x₃   ≥  0

General constraints:

x₁  ≥   0       x₂    ≥   0       x₃     ≥   0           all integers

The model is:

z  =  30*x₁  +  50*x₂  +  20*x₃      to maximize

Subject to:

0.5*x₁  +  2*x₂  + 0.75*x₃  ≤  40

1*x₁  +  1*x₂   + 0.5*x₃       ≤  40

2*x₁  +  5*x₂  +  2*x₃        ≤  100

0.5*x₁  -  0.5*x₂  -  0.5*x₃  ≤ 0

-0.2*x₁  - 0.2*x₂ + 0.8*x₃   ≥  0

x₁  ≥   0       x₂    ≥   0       x₃     ≥   0           all integers

After 6 iterations with the help of the on-line solver AtomZmaths we find

z (max)  =  1250 $

x₁  = 25    x₂  =  0   x₃  =  25

6 0
3 years ago
Just number 7 would be fine but if you could also number 8 would help a lot​
BlackZzzverrR [31]

Answer:

7. r = -5

8. x = -1

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

Step-by-step explanation:

<u>Step 1: Define</u>

r + 2 - 8r = -3 - 8r

<u>Step 2: Solve for </u><em><u>r</u></em>

  1. Combine like terms:                    -7r + 2 = -3 - 8r
  2. Add 8r to both sides:                   r + 2 = -3
  3. Subtract 2 on both sides:            r = -5

<u>Step 3: Check</u>

<em>Plug in r into the original equation to verify it's a solution.</em>

  1. Substitute in <em>r</em>:                    -5 + 2 - 8(-5) = -3 - 8(-5)
  2. Multiply:                              -5 + 2 + 40 = -3 + 40
  3. Add:                                    -3 + 40 = -3 + 40
  4. Add:                                    37 = 37

Here we see that 37 does indeed equal 37.

∴ r = -5 is a solution of the equation.

<u>Step 4: Define equation</u>

-4x = x + 5

<u>Step 5: Solve for </u><em><u>x</u></em>

  1. Subtract <em>x</em> on both sides:                    -5x = 5
  2. Divide -5 on both sides:                      x = -1

<u>Step 6: Check</u>

<em>Plug in x into the original equation to verify it's a solution.</em>

  1. Substitute in <em>x</em>:                    -4(-1) = -1 + 5
  2. Multiply:                               4 = -1 + 5
  3. Add:                                     4 = 4

Here we see that 4 does indeed equal 4.

∴ x = -1 is a solution of the equation.

8 0
3 years ago
Read 2 more answers
On a diagram of the arena, the car park's length is 15 cm. The scale is 1:100.
faltersainse [42]

If a diagram has a scale of 1:100, that means that the real thing is 100 times larger. To find how long the real thing is, that means that we need to multiply the length on the diagram by 100. 100 * 15 is 1500. But, that is 1,500 cm. To convert it into meters, we need to divide by 100. That's because there's 100 centimeters in every meter. 1500/100 is 15, which means that the actual length of the car park is 15 meters.

8 0
3 years ago
Other questions:
  • N/3 ≤ 3<br><br> Solve the Inequality and show all work!
    14·2 answers
  • For the lines defined by the following equations indicate with a "V" if they are vertical, an "H" if they are horizontal, and an
    7·1 answer
  • PLEASE HURRRYY!!!!
    5·1 answer
  • Determine if x=-16 is a zero &amp; find the quotiant and the remainder​
    12·1 answer
  • Could use help on this please. No wrong answers! I NEED to get an A on this otherwise I'll have to literally repeat the year.
    10·1 answer
  • Plsplspslspss helppppieee
    6·1 answer
  • Bryanna is thinking of two numbers. Their sum is −7. One of the numbers is 11. Write an
    8·1 answer
  • Two cylindrical science beakers are similar. The smaller beaker has a radius of 2 centimeters and a height of 4 centimeters. Its
    5·1 answer
  • Find the slope of a line that contains the two points 0, 1 and 1, 3
    13·1 answer
  • Sketch the graph of each linear inequality
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!