Catabolism/destructive metabolism. Both terms are used to describe the process of breaking down complex molecules for its stored energy.
Answer:
A. I, II, III, and V only
Explanation:
In genetics, an allele refers to the specific form of a gene, which encodes traits. These alleles are usually in pairs in a diploid organism i.e. an organism with two sets of chromosomes. According to Gregor Mendel,
- An allele can either be DOMINANT when the allele masks the phenotypic expression of its allelic pair while the allele that is masked is said to be RECESSIVE.
- Two alleles can also be CO-DOMINANT when the two alleles are neither dominant or recessive over one another but are simultaneously expressed in that particular gene.
- Alleles can also be INCOMPLETELY DOMINANT when one allele is not completely dominant over the other, hence, forms a third intermediate phenotype when in combination with the second allele i.e. in an heterozygous state.
Based on this, an allele can be dominant (I), recessive (II), codominant (III), and incompletely dominant (V).
If the mutation occurs during meiosis, the mutation will be incorporated into a gamete. If that gamete is the one that eventually fuses with another gamete (i.e. if it's the sperm that fertilizes the egg), that mutation will be passed on to the offspring. As all the offspring's cells are the result of the first two gametes, all the organism's cells will have that mutation. Obviously this can have dire consequences for the offspring, if the mutation is harmful.
"Hint: synthesizing proteins requires /energy/ and materials"