Salt flows into the tank at a rate of
(1/2 lb/gal) * (6 gal/min) = 3 lb/min
and flows out at a rate of
(Q(t)/60 lb/gal) * (6 gal/min) = 6Q(t) lb/min
The net rate of change of the amount of salt in the tank at time
is then governed by

Solve for
:


![\dfrac{\mathrm d}{\mathrm dt}[e^{6t}Q]=3e^{6t}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dt%7D%5Be%5E%7B6t%7DQ%5D%3D3e%5E%7B6t%7D)


The tank starts with 10 lb of salt, so that Q(0) = 10. This gives us

so that the amount of salt in the tank at time
is given by

Answer:
D: All fractions containing integers are rational numbers.
Answer: Coin B And Coin C
Step-by-step explanation:
Answer:
yeah 13 is the right answerrrrr
Answer:
The diagonal is 30 inches
Step-by-step explanation:
Assuming a rectangular suitcase (with right angles), we can use the Pythagorean theorem to solve this
a² + b² = c²
so we plug our two values to find the diagonal (hypotenuse)
24² + 18² = c²
576 + 324 = c²
900 = c²
c = √900
c = 30
The diagonal is 30 inches