Answer:
Two possible lengths for the legs A and B are:
B = 1cm
A = 14.97cm
Or:
B = 9cm
A = 12cm
Step-by-step explanation:
For a triangle rectangle, Pythagorean's theorem says that the sum of the squares of the cathetus is equal to the hypotenuse squared.
Then if the two legs of the triangle are A and B, and the hypotenuse is H, we have:
A^2 + B^2 = H^2
If we know that H = 15cm, then:
A^2 + B^2 = (15cm)^2
Now, let's isolate one of the legs:
A = √( (15cm)^2 - B^2)
Now we can just input different values of B there, and then solve the value for the other leg.
Then if we have:
B = 1cm
A = √( (15cm)^2 - (1cm)^2) = 14.97
Then we could have:
B = 1cm
A = 14.97cm
Now let's try with another value of B:
if B = 9cm, then:
A = √( (15cm)^2 - (9cm)^2) = 12 cm
Then we could have:
B = 9cm
A = 12cm
So we just found two possible lengths for the two legs of the triangle.
3/4+1/3=9/12+4/12=13/12 of an hour
13/12= 1 1/12
Answer:
V = 128π/3 vu
Step-by-step explanation:
we have that: f(x)₁ = √(4 - x²); f(x)₂ = -√(4 - x²)
knowing that the volume of a solid is V=πR²h, where R² (f(x)₁-f(x)₂) and h=dx, then
dV=π(√(4 - x²)+√(4 - x²))²dx; =π(2√(4 - x²))²dx ⇒
dV= 4π(4-x²)dx , Integrating in both sides
∫dv=4π∫(4-x²)dx , we take ∫(4-x²)dx and we solve
4∫dx-∫x²dx = 4x-(x³/3) evaluated -2≤x≤2 or too 2 (0≤x≤2) , also
∫dv=8π∫(4-x²)dx evaluated 0≤x≤2
V=8π(4x-(x³/3)) = 8π(4.2-(2³/3)) = 8π(8-(8/3)) =(8π/3)(24-8) ⇒
V = 128π/3 vu
The number of servings of greens that can be made with one batch of route stock is 0.67 batches.
<h3>Conversion of gallons to cups</h3>
In order to determine the answer, the first step is to convert gallons to cups
1 gallon = 16 cups
<h3>Number of
servings of greens that can be made</h3>
The second step is to divide 16 cups by 1.5 cups.
16 / 1.5 = 10.67 batches
To learn more about division, please check: brainly.com/question/194007
The first option and the third one